• Title/Summary/Keyword: Oil Viscosity

Search Result 687, Processing Time 0.022 seconds

Influence of Interface Active substances(Ionic and Amphoteric) on Chemical property and Streaming Electrification of Transformer Oil (이온성 및 양성 계면 활성제가 변압기유의 화학적 특성 및 유동대전에 미치는 영향)

  • 김용운;이덕출
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.719-726
    • /
    • 1997
  • This research was conducted to analyze the change of surface tension, viscosity, streaming current and conductivity of transformer oil when it were injected with the interface active substances.(anionic:S-111, cationic:S-121, amphoteric:S-131) The changes properties of the surface tension and viscosity of the oil which were injected with the interface active substances were divided into the changes area and the minimum reduction area. The surface tension and viscosity of the oil which were injected with three different kinds of interface active substances showed remarkable change at the point where the concentration of the substance in anionic, in cationic and in amphoteric were 100[ppm], 10[ppm] and 1[ppm] respectively. The streaming current and conductivity of the same sample oil were also changed at the same densities of the surface tension and viscosity. For this factor, it was possibile for us to interpret the mechanism of the streaming current and conductivity. Therefore the interface active substances of the three kinds were injected into the oil within the limit of optimal volume, prevention effects of electrification were showed more excellence than unmixed insulating oil.

  • PDF

Convergence Study on In Vitro Lipid Digestibility of Instant Fried Noodle with HPMC (HPMC 점도의 유탕면 지방소화 지연에 대한 융합 연구)

  • Bae, In Young;Jang, Hye Lim;Choi, Yean Jung;Lee, Hyeon Gyu
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.41-48
    • /
    • 2019
  • The effects of HPMC (hydroxypropyl methylcellulose) on instant fried noodles regarding oil uptake and in vitro lipid digestibility were evaluated according to different viscosity levels, as well as the same apparent viscosity. The oil uptake and lipid digestibility decreased with the increasing HPMC viscosity and replacement level, demonstrating that the reduced oil uptake and lipid digestibility may be caused by the high viscosity of HPMC. Furthermore, the oil uptake and lipid digestibility of noodles with HPMC at both apparent viscosities decreased with the increasing viscosity of HPMC in spite of having the same apparent viscosity. As a result, the high viscosity of HPMC on instant fried noodles was more critical factor compared to apparent viscosity for lowering oil uptake and lipid digestibility.

A Study On the Application of VHVI Base Oil - Hydraulic Fluid for Construction Equipments (VHVI 기유의 제품 적용 기술에 관한 연구 - 건설 중장비용 유압유)

  • Kwon W.S.;MOON W.S.;Yoon H.H.;Kim K.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.152-157
    • /
    • 2003
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper show that there is a sharp change in viscosity drop and moderate additive depletion when viscosity index of hydraulic oil is very high. For the extension of hydraulic fluid life, it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Performance of newly developed hydraulic oil based on used oil analysis is compared with previously used one. The properties of new formulation are the viscosity index of 140 and improved thermal stability consists of VHVI base oil. Field test results showed the possibility of extension of fluid life. Additionally, for development of high performance product, new required properties and performances were discussed.

  • PDF

Influence of Lubricating Oil Environments on Behavior of Cavitation Erosion for Alloy Metals of Bearing (베어링 합금재에 대한 캐비테이션 침식 거동에 미치는 윤활제 환경의 영향)

  • 임우조;이진열
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.55-61
    • /
    • 1993
  • Recently, due to the erosion damage that were generated increasingly at alloy metals of slide bearing by cavity of lubricating oil with tendency of high speed and high output of reciprocating engine, there is a need to study the process on the formation of cavitation erosion, and the characteristic of cavitation erosion at lubricating oil environments under various condition for marine ship. Therefore, the apparatus of cavitation erosion experiment used 20 KHz, $24 \mu m$ piezoelectric vibrator. The main results obtained through this test method are as follows: 1. The max. erosion rate at lubricating oil environments was related to the change of space, oil film thickness, and shown to tendency of gear oil>system oil>turbine oil>mixed oil environments with different viscosity. 2. The pitted hole by cavitation erosion at high viscosity oil environments became small and deep, and in addition to, they appeared to be wide and shallow at low viscosity.

OPERATION OF TILTING 5-PADS proceeding BEARING AT DIFFERENT GEOMETRIC PARAMETERS OF PADS

  • Strzelecki, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.99-100
    • /
    • 2002
  • Radial, tilting-pad proceeding bearings are applied in high speed rotating machines operating at stable small and mean loads and the peripheral speeds of proceeding reaching 150 m/s. The operation of bearing can be determined by static characteristics including the oil film pressure, temperature and viscosity distributions, minimum oil film thickness, load capacity, power loss, oil flow. The operation of 5-lobe tilted-pad proceeding bearing has been introduced at the assumption of adiabatic oil film. The oil film pressure, temperature and viscosity distributions habe received by iterative solution of the Reynolds', energy and viscosity equations. The resulting oil film force, minimum oil film thickness, power loss. oil flow, maximum oil film pressure, maximum temperature were computed for different sets of bearing geometric parameters as: bearing length to diameter ratio, pad angular length and width as well as pad relative clearance.

  • PDF

Tribological Influence of Kinematic Oil Viscosity Impregnated in Nanopores of Anodic Aluminum Oxide Film (함침 오일 점도에 따른 나노동공 구조의 산화알루미늄 박막의 마찰 및 마멸 거동)

  • Kim, Dae-Hyun;Ahn, Hyo-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.625-630
    • /
    • 2013
  • The friction behavior of a 60-${\mu}m$-thick anodic aluminum oxide (AAO) film having cylindrical nanopores of 45-nm diameter was investigated as a function of impregnated oil viscosity ranging from 3.4 to 392.6 cSt. Reciprocating ball-on-flat sliding friction tests using a 1-mm-diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 to 1 N in an ambient environment. The friction coefficient significantly decreased with an increase in the oil viscosity. The boundary lubrication film remained effectively under all test conditions when high-viscosity oil was impregnated, whereas it was easily destroyed when low-viscosity oil was impregnated. Thin plastic deformed layer patches were formed on the worn surface with high-viscosity oil without evidence of tribochemical reaction and transfer of counterpart material.

Comparison of Rolling Contact Fatigue Life of Bearing Steel Rollers Lubricated with Traction Oil and Mineral Oil Corresponding to ISO VG32

  • Nakajima, A.;Mawatari, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.291-292
    • /
    • 2002
  • Using a low viscosity synthetic traction oil and a low viscosity mineral oil with nearly equal viscosity grade of ISO VG 32, the effect of kind of oil on the fatigue life of bearing steel rollers was examined. A pair of rollers finished the contact surfaces to a mirror-like condition were driven under rolling with sliding conditions of s = -3.2% and a maximum Hertzian stress in the range of $P_H=2.8GPa{\sim}4.0GPa$ was applied in point contact condition. As a result of experiments, the fatigue life with a mineral oil was longer than that with a traction oil under higher stress conditions above $P_H=3.4GPa$. Based on the numerical calculation results of the thermal EHL which simulates the present experiment, the authors discuss the reason why such a difference in the fatigue life comes out.

  • PDF

Relationship between Physical and Chemical Properties of Frying Vegetable Oils (가열산화에 의한 대두유와 면실유의 물리화학적 특성변화와 상관관계)

  • 이근태;박성민;황영길;강옥주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.4
    • /
    • pp.654-659
    • /
    • 1994
  • To elucidate the relationship between physical and chemical properties of frying vegetable oils, soybean oil and cottonseed oil were heated in air temperatures from $160^{\circ}C\;to\;220^{\circ}C$ for 60 hours. Acid value, carbonyl value, iodine value, viscosity and content of polymer were remarkably changed as higher heating temperature and/or longer heating time. Correlation coefficient of viscosity to acid value was 0.9843 for soybean oil and 0.9819 for cottonseed oil. In case of viscosity and carbonyl value, viscosity also showed good relationship to carbonyl value as 0.9779 for soybean oil and 0.9797 for cottonseed oil. And correlation coefficient of viscosity to iodine value of soybean oil was 0.9852 and cottonseed oil was 0.9948.

  • PDF

Evaluation of the thermal stability and estimation of the lifetime of PAG and POE oil (PAG 및 POE 오일의 열안정성 평가 및 수명 예측)

  • Park, Keun-Seo;Park, Kyoung-Kuhn;Kim, Seok-Hyeon;Kang, Byung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.386-391
    • /
    • 2005
  • An experimental study was conducted to analyze the thermal stability and to estimate the lifetime of refrigerating lubricants. PAG and POE oil are considered as a test fluids in this study. The viscosity of PAG and POE oil was measured by the vibration type viscometer while temperature is varied periodically in the range of $0^{\circ}C{\sim}100^{\circ}C$. The results indicate that the reduction rates of viscosity of PAG and POE oil were less than 5% after 510 cycles. In order to estimate lifetime of PAG and POE oil with temperature, the viscosity was measured while the temperature of oils was maintained at 180, 200 and $220^{\circ}C$. It is found that the lifetimes of PAG oil were shown to be 244, 177 and 89 hours at the temperature of 180, 200 and $220^{\circ}C$, respectively. Also the lifetimes of POE oil were estimated to be 1,744, 1,007 and 334 hours at the temperature of 180, 200 and $220^{\circ}C$, respectively. The lifetime correlations of PAG and POE oil are suggested in this paper.

  • PDF

Friction Assessment of Canola Oil on Contact Bearing Materials

  • Okechukwu, Nicholas Nnaemeka;Byun, JaeYoung;Kim, JongSoon;Park, JongMin;Kwon, SoonGoo;Chung, SungWon;Kwon, SoonHong;Choi, WonSik
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • In manufacturing operations, oil plays a crucial role in reducing friction and wear among interacting surfaces at varying velocities, loads, and temperature. Hydrocarbon oil is considered the origin of lubrication oils. However, this base oil has been limited in its use as it is a principal cause of pollution. This research focuses on identifying a biodegradable base oil lubricant that possesses a stable coefficient of friction and viscosity with temperature. Friction analysis is conducted by employing a pin on a disk tribotester with a fixed load of 10 N at varying sliding speeds ranging from 0.06 m/s to 0.34 m/s. Oil viscosity analysis is perfomed at room temperature by using a rotary viscometer. Tests are performed using canola oil and paraffin oil as lubricants. The results indicate that the viscosity of canola oil is more efficient than paraffin oil. The non-dimensional characteristic number according to the Stribeck curve reveals an elastohydrodynamic lubrication regime with canola oil lubrication. A comparison of both lubricants reveals that, the friction efficiency of canola oil and paraffin oil does not differ considerably. However, the friction in canola oil is observed to decrease more than that in paraffin oil at an elevated sliding speed. The tests confirm that canola oil is potent in minimizing the friction coefficient of SCM440 bodies interacting with one another as well as acted upon by load.