• Title/Summary/Keyword: Oil Retention

Search Result 123, Processing Time 0.028 seconds

A comprehensive review on Tukhme Kunjud (Sesamum indicum Linn.) with special reference to Unani System of Medicine.

  • Khatoon, Rizwana;Abbasi, Hana;Aslam, Mohammad;Chaudhary, Shahid Shah
    • CELLMED
    • /
    • v.9 no.3
    • /
    • pp.2.1-2.7
    • /
    • 2019
  • Sesame (Sesamum indicum L.) is a rich source of edible oil most commonly it is used as a food product mainly in bakeries and also use as a common source of oil in daily kitchen needs. Due to the presence of some special phytochemicals like proteins, fibers, oil, minerals and antioxidants it is highly used for medicinal and therapeutic purposes. It is a good source of energy and act as an antiaging agent. Its seeds are used as Anti-helmintic, antihypertensive, antimicrobial, cytotoxic and Hepatoprotective but its seed coat which is a byproduct of sesame and a cherished source of fibers is normally use for animal feedstuff. In Unani system of medicine it is used both as drug & diet (dawa wa ghida). In classical Unani literature it is indicated in various disorders like Asthma, Dry Cough, Gastritis (due to any drug, excessive use of alcohol), Dryness of Intestine, Dryness in throat, Renal Stone, Bleeding Piles, Amenorrhea, Retention of urine, Dysuria, Orchitis, Sexual Debility, Anorexia. The present review article, an attempt have been made to compile all the pharmacological and Pharmacognostical characters of Sesamum indicum with special reference to Unani literature.

Water-insoluble, Whey Protein-based Microcapsules for Controlled Core Release Application

  • Lee, Sung-Je
    • Journal of Dairy Science and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.115-123
    • /
    • 2005
  • Microcapsules consisting of natural, biodegradable polymers for controlled and/or sustained core release applications are needed. Physicochemical properties of whey proteins suggest that they may be suitable wall materials in developing such microcapsules. The objectives of the research were to develop water-insoluble, whey protein-based microcapsules containing a model water-soluble drug using a chemical cross-linking agent, glutaraldehyde, and to investigate core release from these capsules at simulated physiological conditions. A model water soluble drug, theophylline, was suspended in whey protein isolate (WPI) solution. The suspension was dispersed in a mixture of dichloromethane and hexane containing 1% biomedical polyurethane. Protein matrices were cross-linked with 7.5-30 ml of glutaraldehyde-saturated toluene (GAST) for 1-3 hr. Microcapsules were harvested, washed, dried and analyzed for core retention, microstructure, and core release in enzyme-free simulated gastric fluid (SGF) and simulated intestinal fluid(SIF) at $37^{\circ}C$. A method consisting of double emulsification and heat gelation was also developed to prepare water-insoluble, whey protein-based microcapsules containing anhydrous milkfat (AMF) as a model apolar core. AMF was emulsified into WPI solution (15${\sim}$30%, pH 4.5-7.2) at a proportion of 25${\sim}$50%(w/w, on dry basis). The oil-in-water emulsion was then added and dispersed into corn oil ($50^{\circ}C$) to form an O/W/O double emulsion and then heated at $85^{\circ}C$ for 20 min for gelation of whey protein wall matrix. Effects of emulsion composition and pH on core retention, microstructure, and water-solubility of microcapsules were determined. Overall results suggest that whey proteins can be used in developing microcapsules for controlled and sustained core release applications.

  • PDF

Enhancing the Moisturizing Ability of the Skin Softener using Nanoemulsion Based on Phospholipid Liposome

  • Lee, Jinseo;Park, Su In;Heo, Soo Hyeon;Kim, Miok;Shin, Moon Sam
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.236-242
    • /
    • 2020
  • In this paper, we present the improvement in low moisturizing ability and stability that existing skin softeners have due to the low oil content, by developing skin softener using nanoemulsion of phospholipid liposome, based on the properties of nanoemulsion in cosmetic formulation. In this study, two types of oil; dimethicone (DC 200/6cs) or medium chain triglyceride (MCT), and two kinds of lecithin; unsaturated or saturated were respectively applied to produce nanoemulsion. In the particle size analysis of nanoemulsion, the droplet size of nanoemulsion containing DC200/6cs and unsaturated lecithin was the smallest, and all nanoemulsion showed high stability in the measurement of zeta potential. Therefore, with the smallest particle size and high stability, moisture contents and trans epidermal water loss(TEWL) were measured using the skin softener of DC200/6cs and unsaturated lecithin contained nanoemulsion, and the measurement was compared with the non-oil skin softener and the skin softener with only small amount of oil. The results showed that the moisture content of the skin softener using nanoemulsion increased greatly than other two skin softeners, showing high hydration ability and water retention capacity, and TEWL decreased greatly, therefore preventing the evaporation of moisture from the skin. As a result, the oil content and stability of the skin softener was improved by utilizing nanoemulson based of phospholipid liposome, and it is expected to be used in various ways in cosmetic industry.

Volatile flavor components of Korean ginger(Zingiber officinale Roscoe)extracted with liquid carbon dioxide (액체 이산화탄소 추출법에 의한 생강 (Zingiber officinale Roscoe)의 향기성분)

  • Kim, Myung-Kon;Na, Mun-Su;Hong, Jai-Sik;Jung, Soon-Taek
    • Applied Biological Chemistry
    • /
    • v.35 no.1
    • /
    • pp.55-63
    • /
    • 1992
  • The essential oil of Korean ginger(Zingiber officinale Roscoe) was isolated by liquid carbon dioxide extraction method and fractionated into one hydrocarbon fraction and two oxygenated hydrocarbon fractions by using silica gel column chromatography. The compositions of the resulting oils were investigated by GC and GC-MS spectrometry. Out of 102 identified compounds, 44 were identified by comparing GC retention time and mass spectral data with authentic samples and 58 were tentatively identified according to mass spectral data only. The major compounds of hydrocarhon fraction were $zingiberene,\;{\beta}-sesquiphellandrene,\;{\gamma}-bisabolene,\;{\gamma}-cardinene,\;ar-curcumene$, and those of oxygenated hydrocarbon fractions wee geranal, sesquisabinene hydrate, borneol and zingiberenol. The major compounds of ginger oil were zingiberene, $citronellol+{\beta}-sesquiphellandrene,\;geranial,\;{\gamma}-bisabolene\;and\;ar-curcumene+geranyl\;acetate$, and ginger oil contained higher amounts of sesquiterpene hydrocarbons. The yield of extract was 6.96%.

  • PDF

Destruction and Removal of PCBs in Waste Transformer Oil by a Chemical Dechlorination Process

  • Ryoo, Keon-Sang;Byun, Sang-Hyuk;Choi, Jong-Ha;Hong, Yong-Pyo;Ryu, Young-Tae;Song, Jae-Seol;Lee, Dong-Suk;Lee, Hwa-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.520-528
    • /
    • 2007
  • A practical and efficient disposal of PCBs (polychlorinated biphenyls) in waste transformer oil by a chemical dechlorination process has been reported. The transformer oil containing commercial PCB mixtures (Aroclor 1242, 1254 and 1260) was treated by the required amounts of PEG 600 (polyethylene glycol 600), potassium hydroxide (KOH) and aluminum (Al), along with different reaction temperatures and times. The reaction of PEG with PCBs under basic condition produces arylpolyglycols, the products of nucleophilic aromatic substitution. The relative efficiencies of PCB treatment process were assessed in terms of destruction and removal efficiency (DRE, %). Under the experimental conditions of PEG600/KOH/Al/100 oC/2hr, average DRE of PCBs was approximately 78%, showing completely removal of PCBs containing 7-9 chlorines on two rings of biphenyl which appear later than PCB no. 183 (2,2',3,4,4',5',6-heptaCB) in retention time of GC/ECD. However, when increasing the reaction temperature and time to 150 oC and 240 min, average DRE of PCBs including the most toxic PCBs (PCB no. 77, 105, 118, 123 and 169) in PCB family reached 99.99% or better, with the exception of PCB no. 5 and 8 (2,3-diCB and 2,4'-diCB). In studying the reaction of PEG with PCBs, it confirmed that the process led to less chlorinated PCBs through a stepwise process with the successive elimination of chlorines. The process also permits complete recovery of treated transformer oil through simple segregating procedures.

Chemical Treatment of the PCBs-laden Transformer Insulation Oil (PCBs 함유 변압기 절연유의 화학적처리)

  • Ryoo, Keon-Sang;Choi, Jong-Ha;Choi, Jin-Whan
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1499-1507
    • /
    • 2011
  • Practical disposal of transformer insulation oil laden with PCBs (polychlorinated biphenyls) by a chemical treatment has been studied in field work. The transformer insulation oil containing PCBs was treated by the required amounts of PEG (polyethylene glycol) and KOH, along with different reaction conditions such as temperatures and times. The reaction of PEG with PCBs under basic condition produces arylpolyglycols, the products of nucleophilic aromatic substitution. Removal efficiencies of PCBs in insulation oil before and after chemical treatment were examined. The removal efficiency of PCBs was very low at lower temperatures of 25 and $50^{\circ}C$. Under the reaction condition of PEG 600/KOH/$100^{\circ}C$/2hr, removal efficiency of PCBs was approximately 70%, showing completely removal of PCBs containing 7~9 chlorines on biphenyl frame which appear later than PCB IUPAC Number 183 (2,2',3,4,4',5',6-heptaCB) in retention time of GC/ECD. However, when increasing the reaction temperature and time to $150^{\circ}C$ and 4 hours, removal efficiency of PCBs reached 99.99% without any formation of PCDDS/PCDFs during the process. Such reaction conditions were verified by several official analytical institutions. In studying the reaction of PEG with PCBs, it confirmed that the process of chemical treatment led to less chlorinated PCBs through a stepwise process with the successive elimination of chlorines.

Effect of Dietary Energy Level on Nutrient Utilization, Insulin-like Growth Factor-I and Insulin-like Growth Factor Binding Protein-3 in Plasma, Liver and Longissimus dorsi Muscle in Growing-finishing Pigs Using Soybean Oil as an Energy Source

  • Du, W.;Li, Y.J.;Zhao, G.Y.;Yin, Y.L.;Kong, X.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.8
    • /
    • pp.1180-1185
    • /
    • 2009
  • Two experiments were carried out to study the effects of dietary energy level on nutrient digestion, nitrogen (N) utilization, growth performance, insulin-like growth factor-I (IGF-I), and insulin-like growth factor binding protein-3 (IGFBP-3) in plasma, liver and longissimus dorsi muscle in growing-finishing pigs. In experiment 1 (Exp 1), 15 castrated male pigs (Duroc${\times}$Landrace${\times}$Large White) (Body weight, BW, 55.6${\pm}$1.8 kg) were divided into three groups and fed rations containing 13.33, 14.87 and 17.35 MJ digestible energy (DE)/kg as treatments I, II and III, respectively, using soybean oil as an energy source. The experiment lasted 8 days and faecal and urinary samples were collected during the last 3 days. The results showed that the digestibility of dry matter (DM), energy and N was increased from treatments I to III (p<0.01). N-retention and N-retention rate were not influenced by dietary DE level (p>0.05). In experiment 2 (Exp 2), 36 female pigs (Duroc${\times}$Landrace${\times}$Large White) (BW 41.5${\pm}$3.8 kg) were divided into three groups. The pigs were fed with the same three rations used in Exp 1 for 60 days. At the end of Exp 2, eight pigs were selected from each group for blood sampling and 4 pigs for slaughter trial. The results indicated that average daily feed intake (ADFI) and N-intake were significantly decreased (p<0.01), and DE intake (p<0.01) and average daily gain (ADG) (p<0.05) were increased. IGF-I and IGFBP-3 in plasma were increased (p<0.05). No significant differences in IGF-I and IGFBP-3 in liver and longissimus dorsi muscle were found between different treatments. It was concluded that higher dietary DE level improved nutrient digestibility, ADG and feed/gain ratio when soybean oil was used as an energy source in the ration of growing-finishing pigs. No significant differences were found in Nretention and IGF-I and IGFBP-3 in liver and longissimus dorsi muscle between different treatments.

Quality Characteristics of Low-Fat Plant Oil Emulsion Pork Patties (식물성유 유화물로 대체한 저지방 돈육 패티의 품질 특성)

  • Choi, Young-Joon;Lee, Si-Hyung;Lee, Kyoung-Sook;Choi, Gang-Won;Lee, Kyung-Soo;Jung, In-Chul;Shim, Dong-Wook
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1351-1357
    • /
    • 2019
  • This study investigated the effect of plant oil emulsion as a replacement for animal fat on the quality characteristics of low-fat pork patties. Pork patties were manufactured using a pork fat control (CON) and olive (OPP), soybean (SPP), and canola (CPP) oil emulsions. Replacing animal fat with the plant oil emulsions increased the moisture content and decreased the fat content of the patties as compared to those with pork fat. The water holding capacity and cooking yield, and the moisture and fat retention of the patties were significantly increased, and the diameter reduction and shrinkage ratio decreased with the plant oil replacements. The color parameters of the samples were affected by the addition of the plant oil emulsions, and higher L* and a* values were observed in CON. The b* value of the raw pork patty was highest in OPP, and palmitic acid was the most abundant saturated fatty acid. In terms of unsaturated fatty acids, oleic acid was highest in CON, OPP, and CPP, and linoleic acid was highest in SPP. Hardness, cohesion, and chewiness were no different among the samples, although higher springiness was observed in the pork patties with added plant oil emulsions. The taste, flavor, and palatability of the OPP and CPP patties were higher than in the CON and SPP groups. Fat replacement with plant oil emulsion therefore had a positive effect on the quality characteristics of the pork patties, and due to reduced saturated fatty acids, the end-product provides the healthy low-fat option desired by consumers.

Optimization of POME treatment process using microalgae and ultrafiltration

  • Ibrahim, R.I.;Mohammad, A.W.;Wong, Z.H.
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.293-308
    • /
    • 2015
  • Palm oil mill effluent (POME) was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients and high levels of COD and BOD concentrations. This study was devoted on POME treatment and purification using an integrated process consisting of microalgae treatment followed by membrane filtration. The main objective was to find the optimum conditions as retention time and pH in the biological treatment of POME. Since after the optimum conditions there is a diverse effect of time and the process become costly. According to our knowledge, there is no existing study optimized the retention time and percentage removal of nutrients for microalgae treatment of POME wastewater. In order to achieve with optimization, a second order polynomial model regression coefficients and goodness of fit results in removal percentages of ammonia nitrogen ($NH_3-N$), orthophosphorous ($PO_4{^{-3}}$), COD, TSS, and turbidity were estimated. WinQSB technique was used to optimize the objective function of the developed model, and the optimum conditions were found. Also, ultrafiltration membrane is useful for purification of POME samples as verified by experiments.

Volatile Flavor Components of Codonopsis lanceolata Traut. (Benth. et Hook.) (더덕뿌리중의 휘발성 향기성분)

  • Park, Joon-Yung;Kim, Young-Hoi;Kim, Kun-Soo;Kwag, Jae-Jin
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.338-343
    • /
    • 1989
  • The volatile oil of the root of Codonopsis lanceolata Traut. (Benth. et Hook.) was isolated by steam distillation and extraction method and fractionated by silica gel column chromatography. The total volatile oil and each fractions were analyzed by GG, GC-MS and retention indices matching. A total of 50 components were identified in the volatile oil including 16 terpene and terpene alcohols, 13 hydrocarbons, 5 alcohols, 6 aldehyde and ketones, 6 acids, 2 esters and 2 miscellaneous components. The major components were n-hexanal (7.3% of total volatile oil), trans-2-hexenal (24.9%), n-hexanol (19.8%), cis-3-hexen-1-ol (5.6%) and trans-2-hexen-1-ol (29.4%).

  • PDF