• Title/Summary/Keyword: Oil Retention

Search Result 123, Processing Time 0.023 seconds

Difference of the Chemical Compositions Between Petroleum Ether Extract and its Tall Oil in Pitch Pine, Pinus Rigida Mill (리기다소나무재(材)의 유기용매(有機溶媒) 추출물(抽出物)과 그 tall oil 간의 조성(組成)의 차이(差異))

  • Ko, Sang-Woon;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.79-89
    • /
    • 1988
  • This experiment was carried out to investigate the difference of compositions between petroleum ether extract and its tall oil in Pinus rigida Mill. xylem and to obtain the basic data on effective extraction and its utilization of by-product, resin and fatty acid, when pulp making. After both petroleum ether extract from wood meal and its tall oil in pitch pine were separated to the resin and fatty acid by using DEAE-Sephadex and aluminum oxide column, these were analyzed with gas chromatograph. The results obtained were as follows: 1. Fatty acids contained as ester form in living trees were varied by peroxide of organic solvent in petroleum ehter extraction and cooking chemicals in cooking. 2. Pimaric-type acid was eluted earlier than abietic-type acid in resin acids and the fewer the carbons, the earlier the elution in fatty acids. 3. The retention time of SE-30 column was even smaller than that of OV-101 column but the relative retention time obtained by using methyl pimarate and methyl stearate as internal standard was nearly identical. 4. Both petroleum ether extract and tall oil mainly consisted of resin acids, expecially abietic-type acid. 5. Tall oil had more fatty acid but less resin acid than petroleum ether extract. Also, the content of unidentified materials was increased owing to the isomerization and the shift of double bond position in unsaturated fatty acids by high temperature and cooking chemicals when cooking.

  • PDF

Rapid Gas Chromatographic Screening of Vegetable Oils for Free Fatty Acids (기체크로마토그래피법에 의한 식물성 유지내 유리 지방산의 신속한 스크리닝)

  • Kim, Jung-Han;Kim, Kyoung-Rae;Chai, Jeong-Young;Oh, Chang-Hwan;Park, Hyung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.373-378
    • /
    • 1993
  • A rapid gas chromatographic profiling method for the simultaneous analysis of free fatty and other acids was applied to vegetable oils. Oil samples were dissolved in dichloromethane and the free acids were extracted with saturated $NaHCO_3$ solution. The aqueous extract was acidified and then loaded onto the Chromosorb P column for the extraction. The acids were eluted with diethyl ether selectively from Chromosorb P column and were treated with triethylamine to prevent the losses of volatile acids. Several long chain fatty acids were detected from soybean oil, rice-bran oil, sesame oil and perilla oil. Various organic acids including odd number fatty acids were detected in crude oil, especially sesame oil. Arachidic acid from perilla oil and vanillic acid from sesame oil, which were not reported before were detected. The content ratio of free linoleic acid to oleic acid was $1.02{\sim}1.18$, which was similar to the reported data. When the GC profile of organic acids were simplified to their corresponding retention index spectra of bar graphical forms, they presented characteristic pattern of each vegetable oil that can be quickly recognized.

  • PDF

Analysis of Illegally Mixed Used Lube Oil in Bunker C (폐윤활유 불법혼입 C중유 물성 분석)

  • Lim, Young-Kwan;Lee, Jae-Min;Kim, Wan-Sik;Lee, Jeong-Min
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.191-196
    • /
    • 2018
  • Bunker C is used in heavy-lift ships, furnaces, and boilers for generating heat, and power. Bunker C has only four regulations for quality standards and is rarely inspected in Korea. For these reasons, other oils such as used lubricant oil are commonly blended with Bunker C. This illegal mixture of fuel can damage the boilers, engines and affect the environment adversely. In this study, we investigate the fuel properties and perform atomic analysis of illegal Bunker C blended with used lube oil. The test results show that higher quantities of used lube oil in Bunker C have higher flash points, total acid numbers, copper corruption, solid contamination, and metal components. Further, increasing quantities of used lube oil in Bunker C cause lower viscosity, sulfur, and V content. However, adequate sample (approximately 1 L) is needed to evaluate presence of adulterants in Bunker C, we attempted the SIMDIST analysis. In the SIMDIST chromatogram, the used engine oils are detected for longer retention times than Bunker C owing to the high boiling point. We also quantitatively analyzed the lube oil content using SIMDIST.

The Study of Crude Oil Contaminated Soil Remediation by Indirect Thermal Desorption (간접열탈착방식을 이용한 원유오염토양 정화효율 평가)

  • Lee, In;Kim, Jong-Sung;Jung, Tae-Yang;Oh, Seung-Taek;Kim, Guk-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.14-20
    • /
    • 2016
  • Remediation of crude oil contaminated soil is complicate and hard to apply traditional methods because of its persistency, durability, and high viscosity. Therefore, in this study, the efficiency of crude oil contaminated soil remediation was tested by developing a pilot-scale thermal desorption system using the indirect heating method with an exhaust gas treatment. Under optimal condition drawed by temperature and retention time, the remedial efficiency of crude oil contaminated soil and treatability of exhaust gas were analyzed. Total Petroleum Hydrocarbon (TPH) concentration of crude oil contaminated soil was decreased to 69.7 mg/kg on average and the remedial efficiency was measured at 99.60%. Through the exhaust gas, 86.0% of Volatile Organic Compounds (VOC) was degraded and 97.16% of complex malodor was reduced under the suggested optimum operation condition. This study provides important basic data to be useful in scaling up of the indirect thermal desorption system for the remediation of crude oil contaminated soil.

A study on the Characteristic of Mask Sheets (마스크 팩 시트의 특성 연구)

  • Jang, Hye-In
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.787-798
    • /
    • 2017
  • This is a study on characteristics according to the material of sheet-type mask packs being sold on the market. The absorption capacities of water soluble components such as purified water, 1.3-propanediol, 1.3-butylene glycol, glycerine, and hyaluronic acid are compared with that of various oils including cyclomethicone, dimethicone, phytosqualane, caprylic capryl triglyceride, grape seed oil, and macadamia nut oil. As a result, all of the water soluble components except purified water showed higher moisture absorption capacity as the viscosity increased. And in case of oil, all oil showed higher oil absorption capacity according to the viscosity. During this test, the mask sheets with the type of acetic acid fermented bio-cellulose showed 500~1,000 times or more absorption capacity on water soluble wetting agent or all oils, which is due to the fine mesh structure seen in the 5,000x enlarged photograph at surface structure. This mesh structure was well recognized on the cross section and these structural features enhance the absorption capacity of water and oil. It is also believed that largely contained water-soluble components and oils facilitate the discharge over time. In addition, since each mask sheet shows their characteristics according to their material, it is intended to be a basic research for manufacturing mask packs good for skin.

Utilization of Canola Full-Fat Seeds and the Restored Mixture of Meal and Oil by Broiler (브로일러에 대한 Canola 전지종실 및 Canola 박과 기름 혼합물의 사료이용)

  • 이규호;심정석
    • Korean Journal of Poultry Science
    • /
    • v.17 no.2
    • /
    • pp.93-100
    • /
    • 1990
  • Two experiments were conducted to assess the use of full-fat canola seed and restored oil meal plus oil of canola in the ration for broiler chicks. In the first experiment, broilers received diets containing 10% heated or non-heated full-fat canola seed and conola oil meal mixed with corresponding oil or animal fat. In the second experiment, broiler diets contained 10 or 20% of canola seed and canoia meal mixed with canola oil. Heat treatment of full-fat canola seed and the types of fat mixed with meals had no significant effect on all of broiler performance and nutrient retention parameters investigated. Bioilers consuming 10 to 20% dietary canola seed or mixture of canola meal plus oil performed as well as the control birds. It is concluded that the canola seed or the mixture of restored canola meal plus oil or fat can be well utilized by broiler at dietary levels of 10 to 20%.

  • PDF

Change in Physical Properties of Engine oil Contaminated with Diesel (경유 혼입에 의한 엔진오일 물성 변화)

  • Lim, Young-Kwan;Lee, Jong-Eun;Na, Yong-Gyu;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.45-51
    • /
    • 2017
  • Engine oil is a substance used for the lubrication of internal combustion systems. However, in some case, defects in engine systems may contaminate engine oil with fuel. Contaminated engine oil can cause problems in the normal functioning of a vehicle. In this study, we investigate the functional properties of engine oil contaminated with diesel fuel. The test results indicate that the engine oil contaminated with diesel fuel has low flash point, pour point, density, kinematic viscosity and cold cranking simulator value. The contaminated engine oil which has low plash point can cause fire and explosion accident. Furthermore, a four ball test indicates that the contaminated engine oil increases wear scar to poor lubricity. Moreover, we investigate the GC pattern using SIMDIST (simulated distillation) for determination of diesel in engine oil. The SIMDIST analytic result, diesel was detected at earlier retention time than engine oil in chromatogram. Thus the SIMDIST method can define whether engine oil is contaminated by diesel fuel or not. We can use the SIMDIST method for the diagnosis of oil condition instead of analyzing other physical properties that require many analytic instruments, large volume of oil sample and long analysis time.

Effects of Co-current and Cross Flows on Circular Enhanced Gravity Plate Separator Efficiencies

  • Ngu, Lock Hei;Law, Puong Ling;Wong, Kien Kuok
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.151-155
    • /
    • 2014
  • This study compares the effects of flow on oil and suspended solids removal efficiencies in circular enhanced gravity plate separator equipped with coalescence medium. Coalescence medium acts to capture rising oil droplets and settling solid particles and assist in the coalescence of oil and coagulation of solid. The circular separator uses an upflow center-feed perforated-pipe distributor as the inlet. The co-current flow is achieved using 4 increasing sizes of frustum, whereas cross flow uses inclined coalescence plates running along the radius of the separator. The different arrangement gave the cross flow separator a higher coalescence plan area per operational volume, minimal and constant travelling distance for the oil droplets and particles, lower retention time, and higher operational flowrate. The cross flow separator exhibited 6.04% and 13.16% higher oil and total suspended solids removal efficiencies as compared to co-current flow.

Canola oil is an excellent vehicle for eliminating pesticide residues in aqueous ginseng extract

  • Cha, Kyu-Min;Lee, Eun-Sil;Kim, Il-Woung;Cho, Hyun-Ki;Ryu, Ji-Hoon;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.292-299
    • /
    • 2016
  • Background: We previously reported that two-phase partition chromatography between ginseng water extract and soybean oil efficiently eliminated pesticide residues. However, an undesirable odor and an unpalatable taste unique to soybean oil were two major disadvantages of the method. This study was carried out to find an alternative vegetable oil that is cost effective, labor effective, and efficient without leaving an undesirable taste and smell. Methods: We employed six vegetable oils that were available at a grocery store. A 1-mL sample of the corresponding oil containing a total of 32 pesticides, representing four categories, was mixed with 10% aqueous ginseng extract (20 mL) and equivalent vegetable oil (7 mL) in Falcon tubes. The final concentration of the pesticides in the mixture (28 mL) was adjusted to approximately 2 ppm. In addition, pesticides for spiking were clustered depending on the analytical equipment (GC/HPLC), detection mode (electron capture detector/nitrogen-phosphorus detector), or retention time used. Samples were harvested and subjected to quantitative analysis of the pesticides. Results: Soybean oil demonstrated the highest efficiency in partitioning pesticide residues in the ginseng extract to the oil phase. However, canola oil gave the best result in an organoleptic test due to the lack of undesirable odor and unpalatable taste. Furthermore, the qualitative and quantitative changes of ginsenosides evaluated by TLC and HPLC, respectively, revealed no notable change before or after canola oil treatment. Conclusion: We suggest that canola oil is an excellent vehicle with respect to its organoleptic property, cost-effectiveness and efficiency of eliminating pesticide residues in ginseng extract.

Flavor Components of Poncirus trifoliata (탱자(Poncirus trifoliata)의 향기성분 분석에 관한 연구)

  • Oh, Chang-Hwan;Kim, Jung-Han;Kim, Kyoung-Rae;Ahn, Hey-Joon
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.749-754
    • /
    • 1989
  • The essential oil was prepared by a gas co-distillation method from flavedo of Poncirus trifoliata and was analyzed by GC/ retention index (RI) and GC/MS. The essential oil prepared by a gas co-distillation gave a whole fragrance of Poncirus trifoliata. The identification of the flavor components was performed by multi-dimensional analysis using GC/RI and GC/MS. GC/RI and GC/MS were complementary to each other. In applying GC/RI for identification, it was more effective when two columns of different polarities were used. Thirty volatile flavor constituents were identified in Poncirus trifoliata. Limonene, myrcene, ${\beta}-caryophyllene,\;trans-{\beta}-ocimene$, ${\beta}-pinene$, 3-thujene and 7-geranyloxycoumarin were the major constituents and cis-3-hexenyl acetate, n-hexyl acetate, 2-methyl acetophenone, elixene and elemicine had not been reported earlier as citrus components.

  • PDF