• 제목/요약/키워드: Oil Red O staining

검색결과 252건 처리시간 0.028초

황금(黃芩, Scutellariae Radix)의 지방축적억제 효능연구 (A Study on the Inhibitory Effects of Scutellariae Radix on Fat Accumulation)

  • 김경선;차민호;이수원;윤유식
    • 한국한의학연구원논문집
    • /
    • 제9권2호
    • /
    • pp.45-54
    • /
    • 2003
  • Obesity is caused by unbalance of energy intake and expenditure, which results in extra accumulation of adipose tissue. Obesity is directly related to metabolic diseases such as diabetes, hyperlipidemia, fatty liver and so on. To investigate the anti-obesity effects of Scutellariae Radix, 70% EtOH extract and water extract of it were tested by in vitro and in vivo studies of fat accumulation. 3T3-L1 preadipocyte cell line was used in a in vitro study of fat accumulation. After 3T3-L1 cells were induced to differentiate into adipocytes, S. radix extract were added and fat accumulation was measured by oil red O staining. In vivo study showed that weight and epididymal/ retro-peritoneal adipose tissues were significantly reduced in mice fed Scutellariae Radix extract compared with control group. Especially, mice fed Scutellariae Radix extract showed reduced serum triglyceride and glucose levels. When adipose tissues were analyzed by microscope, mean adipocyte size was significantly reduced in Scutellariae Radix extract-fed mice. Therefore, this study showed inhibitory effects of Scutellariae Radix on in vitro and in vivo fat accumulation.

  • PDF

뽕나무(Morus alba)와 꾸지뽕나무(Cudrania tricuspidata)의 부위에 따른 항산화 활성 및 3T3-L1세포 지방축적 억제 효과 (Antioxidative Activities and Inhibitory Effects on Lipid Accumulation of Extracts from Different Parts of Morus alba and Cudrania tricuspidata)

  • 김건희;김은향
    • 한국식품영양학회지
    • /
    • 제32권2호
    • /
    • pp.138-147
    • /
    • 2019
  • In this study, we examined antioxidative effects and the anti-adipogenesis effect of different parts of Cudrania tricuspidata (C), and Morus alba (M). Total polyphenol contents were highest in M-root ($34.56{\pm}0.045mg\;GAE/g$), and there was no significant difference, between C-root and M-leaf. Total flavonoid contents of C-root were highest ($23.07{\pm}0.004mg\;QE/g$). To examine antioxidant activities of C and M extracts, DPPH and ABTS radical scavenging activity, and FRAP assay, was used. Results show that antioxidant activities of C and M extracts increased, in a dose-dependent manner. Adipocytes are generated by preadipocyte differentiation, during adipogenesis. Matured adipocytes accumulate in abnormal and cause obesity. We investigated effects of leaf and root extracts of C and M, on lipid accumulation, in 3T3-L1 adipocytes. Changes in cell morphology, and degrees of lipid accumulation in adipocytes, were evaluated by Oil Red O staining. Root extracts of C and M, reduced lipid content in a dose-dependent manner. Therefore, root extracts of C and M, may be good candidates for managing obesity.

부처손(Selaginella tamariscina) 추출물의 리파아제 저해 활성 및 지질 축적 억제 효과 (The Effect of Selaginella tamariscina on Inhibition of Pancreatic Lipase and Lipid Accumulation)

  • 김건희;이신영;이애랑
    • 한국식품영양학회지
    • /
    • 제32권1호
    • /
    • pp.27-32
    • /
    • 2019
  • The objective of this study was to evaluate novel usability as natural anti-obesity supplement of Selaginella tamariscina extract. The total phenol contents and total flavonoid contents were $60.29{\pm}3.11GAE\;mg/g$ and $14.90{\pm}0.34QE\;mg/g$, respectively. To evaluate anti-obesity activity of Selaginella tamariscina extract, pancreatic lipase inhibition activity as well as its inhibition effect of lipid accumulation in adipocytes were conducted by Oil Red O staining and lipolysis assay. The result of pancreatic lipase inhibition activity of S. tamariscina extract showed a wide range between 40 and 73% dose dependently. While the incubation of 3T3-L1 cells with S. tamariscina extract inhibited differentiation of preadipocytes and reduced lipid accumulation, the level of released free glycerol into culturing medium was increased in multiple concentrations. These results showed that S. tamariscina extract inhibit adipogenesis and pancreatic lipase activity. Thus, S. tamariscina extract can be a candidate for regulating lipid accumulation in obesity.

Silencing YY1 Alleviates Ox-LDL-Induced Inflammation and Lipid Accumulation in Macrophages through Regulation of PCSK9/ LDLR Signaling

  • Zhengyao Qian;Jianping Zhao
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권11호
    • /
    • pp.1406-1415
    • /
    • 2022
  • The formation of macrophage foam cells stimulated by oxidized low-density lipoprotein (ox-LDL) is deemed an important cause of atherosclerosis. Transcription factor Yin Yang 1 (YY1), which is a universally expressed multifunctional protein, is closely related to cell metabolism disorders such as lipid metabolism, sugar metabolism, and bile acid metabolism. However, whether YY1 is involved in macrophage inflammation and lipid accumulation still remains unknown. After mouse macrophage cell line RAW264.7 cells were induced by ox-LDL, YY1 and proprotein convertase subtilisin/kexin type 9 (PCSK9) expressions were found to be increased while low-density lipoprotein receptor (LDLR) expression was lowly expressed. Subsequently, through reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, Oil Red O staining and cholesterol quantification, it turned out that silencing of YY1 attenuated the inflammatory response and lipid accumulation in RAW264.7 cells caused by ox-LDL. Moreover, results from the JASPAR database, chromatin immunoprecipitation (ChIP) assay, luciferase reporter assay and Western blot analysis suggested that YY1 activated PCSK9 by binding to PCSK9 promoter and modulated the expression of LDLR in the downstream of PCSK9. In addition, the results of functional experiments demonstrated that the inhibitory effects of YY1 interference on ox-LDL-mediated macrophage inflammation and lipid accumulation were reversed by PCSK9 overexpression. To sum up, YY1 depletion inhibited its activation of PCSK9, thereby reducing cellular inflammatory response, cholesterol homeostasis imbalance, and lipid accumulation caused by ox-LDL.

Anti-obesity Effects of Safflower Seeds (SS) on the Differentiation of 3T 3-L1 Pre-adipocytes and Obese Mice Fed a High-fat Diet

  • Se Chul Hong;Mi Young Son;Jin Boo Jeong;Jae Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.69-69
    • /
    • 2023
  • Safflower seeds, classified as a member of the Asteraceae family, a dicotyledonous plant, contain linoleic acid as a major component, known for its pharmacological effect of strengthening bones. Additionally, safflower seeds have been reported to have pharmacological effects on vascular diseases such as atherosclerosis. In this study, we investigated the anti-obesity effect of safflower seed extract by examining its impact on adipocyte differentiation using Oil Red O staining, triglyceride quantification, and GPDH activity measurement. The results showed that safflower seed extract significantly inhibited adipocyte differentiation. Furthermore, we confirmed that safflower seed extract improved body weight, liver weight, adipose tissue size, glucose, and triglyceride levels in a high-fat diet-induced mouse model. These findings suggest that safflower seed extract exhibits potent anti-obesity activity both in vitro and in vivo and has the potential to be developed as a material for future anti-obesity therapies.

  • PDF

Effects of Rosa multiflora root extract on adipogenesis and lipogenesis in 3T3-L1 adipocytes and SD rat models

  • Kyoung Kon Kim;Hye Rim Lee;Sun Min Jang;Tae Woo Kim
    • Nutrition Research and Practice
    • /
    • 제18권2호
    • /
    • pp.180-193
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Obesity is a major cause of metabolic disorders; to prevent obesity, research is ongoing to develop natural and safe ingredients with few adverse effects. In this study, we determined the anti-obesity effects of Rosa multiflora root extract (KWFD-H01) in 3T3-L1 adipocytes and Sprague-Dawley (SD) rats. MATERIALS/METHODS: The anti-obesity effects of KWFD-H01in 3T3-L1 adipocytes and SD rats were examined using various assays, including Oil Red O staining, gene expression analyses, protein expression analyses, and blood biochemical analyses. RESULTS: KWFD-H01 reduced intracellular lipid accumulation and inhibited the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBPα), sterol regulatory element-binding transcription factor 1 (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) in 3T3-L1 cells. KWFD-H01 also reduced body weight, weight gain, and the levels of triglycerides, total and LDL-cholesterol, glucose, and leptin, while increasing high-density lipoprotein-cholesterol and adiponectin in SD rats. PPARγ, C/EBPα, SREBP-1c, ACC, and FAS protein expression was inhibited in the epididymal fat of SD rats. CONCLUSION: Overall, these results confirm the anti-obesity effects of KWFD-H01 in 3T3-L1 adipocytes and SD rats, indicating their potential as baseline data for developing functional health foods or pharmaceuticals to control obesity.

6-O-Galloylsalidroside, an Active Ingredient from Acer tegmentosum, Ameliorates Alcoholic Steatosis and Liver Injury in a Mouse Model of Chronic Ethanol Consumption

  • Kim, Young Han;Woo, Dong-Cheol;Ra, Moonjin;Jung, Sangmi;Kim, Ki Hyun;Lee, Yongjun
    • Natural Product Sciences
    • /
    • 제27권3호
    • /
    • pp.201-207
    • /
    • 2021
  • We have previously reported that Acer tegmentosum extract, which is traditionally used in Korea to reduce alcohol-related liver injury, suppresses liver inflammation caused by excessive alcohol consumption and might improve metabolism. The active ingredient, 6-O-galloylsalidroside (GAL), was isolated from A. tegmentosum, and we hypothesized that GAL could provide desirable pharmacological benefits by ameliorating physiological conditions caused by alcohol abuse. Therefore, this study focused on whether GAL could ameliorate alcoholic fat accumulation and repair liver injury in mice. During chronic alcohol consumption plus binge feeding in mice, GAL was administered orally once per day for 11 days. Intrahepatic lipid accumulation was measured in vivo using a noninvasive method, 1H magnetic resonance imaging, and confirmed by staining with hematoxylin and eosin and Oil Red O. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using a Konelab system, and the triglyceride content was measured in liver homogenates using an enzymatic peroxide assay. The results suggested that GAL alleviated alcohol-induced steatosis,e as indicated by decreased hepatic and serum triglyceride levels in ethanol-fed mice. GAL treatment also correlated with a decrease in the Cd36 mRNA expression, thus potentially inhibiting the development of alcoholic steatosis via the hepatic de novo lipogenesis pathway. Furthermore, treatment with GAL inhibited the expression of cytochrome P450 2E1 and attenuated hepatocellular damage, as reflected by a reduction in ALT and AST levels. These findings suggest that GAL extracted from A. tegmentosum has the potential to serve as a bioactive agent for the treatment of alcoholic fatty liver and liver damage.

Differentiation and characteristics of undifferentiated mesenchymal stem cells originating from adult premolar periodontal ligaments

  • Kim, Seong Sik;Kwon, Dae-Woo;Im, Insook;Kim, Yong-Deok;Hwang, Dae-Seok;Holliday, L. Shannon;Donatelli, Richard E.;Son, Woo-Sung;Jun, Eun-Sook
    • 대한치과교정학회지
    • /
    • 제42권6호
    • /
    • pp.307-317
    • /
    • 2012
  • Objective: The purpose of this study was to investigate the isolation and characterization of multipotent human periodontal ligament (PDL) stem cells and to assess their ability to differentiate into bone, cartilage, and adipose tissue. Methods: PDL stem cells were isolated from 7 extracted human premolar teeth. Human PDL cells were expanded in culture, stained using anti-CD29, -CD34, -CD44, and -STRO-1 antibodies, and sorted by fluorescent activated cell sorting (FACS). Gingival fibroblasts (GFs) served as a positive control. PDL stem cells and GFs were cultured using standard conditions conducive for osteogenic, chondrogenic, or adipogenic differentiation. Results: An average of $152.8{\pm}27.6$ colony-forming units was present at day 7 in cultures of PDL stem cells. At day 4, PDL stem cells exhibited a significant increase in proliferation (p < 0.05), reaching nearly double the proliferation rate of GFs. About $5.6{\pm}4.5%$ of cells in human PDL tissues were strongly STRO-1-positive. In osteogenic cultures, calcium nodules were observed by day 21 in PDL stem cells, which showed more intense calcium staining than GF cultures. In adipogenic cultures, both cell populations showed positive Oil Red O staining by day 21. Additionally, in chondrogenic cultures, PDL stem cells expressed collagen type II by day 21. Conclusions: The PDL contains multipotent stem cells that have the potential to differentiate into osteoblasts, chondrocytes, and adipocytes. This adult PDL stem cell population can be utilized as potential sources of PDL in tissue engineering applications.

인삼 다당체의 항비만 활성 평가 및 기능성 소재 개발 (Anti-obese Function of Polysaccharides derived from Korean Ginseng (Panax ginseng C.A. Meyer) and Development of Functional Food Material in Preventing Obesity)

  • 손명수;김교남
    • 대한본초학회지
    • /
    • 제31권4호
    • /
    • pp.71-77
    • /
    • 2016
  • Objectives : Adipogenesis was defined as a differentiation process of preadipocytes into the adipocytes. Thus, to control of this process can be one of the most important strategies to prevent obesity. Korean ginseng(Panax ginseng C.A. Meyer) is one of the most widely used medicinal herbs. Although multiple biological activities of Korean ginseng, particularly ginsenosides, have been known, the anti-adipogenic role and function of polysaccharides from Korean ginseng are still unclear. In this study, we examined anti-adipogenic activity of polysaccharides and its molecular basis mechanisms are further investigated.Methods : The cytotoxicity of KGP in 3T3-L1 was evaluated by MTT assay. Anti-adipogenic effect of KGP was examined by Oil Red O (ORO) staining and microscopy observation in 3T3-L1 mature adipocytes. The mRNA expression levels of adipogenic transcriptional factors were analyzed by reverse transcription-polymer chain reaction (RT-PCR). To elucidate the adipogenic molecular mechanism of KGT, SB431542 (TGF-β specific inhibitor) was used.Results : We found that polysaccharides showed no effect on the viability of 3T3-L1 preadipocytes. Dose dependent inhibitory effect of polysaccharides on 3T3-L1 adipogenesis was observed as judged by ORO staining and microscopic image analysis. To obtain further mechanistic insight into anti-adipogenic function of polysaccharides, we then tested the effect of polysaccharides treatment on the adipogenic marker genes. The mRNA expressions level of C/EBPα, PPARγ, C/EBPβ, and fatty acid synthase (FAS) were dose-dependently inhibited by KGP treatment in 3T3-L1 mature adipocytes.Conclusions : In conclusion, these findings suggest that the KGP could be used in treatment of obesity and overweight related diseases.