• Title/Summary/Keyword: Oil Price Prediction

Search Result 13, Processing Time 0.021 seconds

Compressive strength prediction of concrete using ground granulated blast furnace slag by accelerated testing (촉진양생법에 의한 고로슬래그 미분말 혼합 콘크리트의 압축강도 예측)

  • Kim, Yong Jic;Kim, Young Jin;Choi, Yun Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.91-98
    • /
    • 2009
  • Recently, production cost of ready mixed concrete has been increased due to the rising cost of raw materials such as cement and aggregate etc. cause by the upturn of oil price and increase of shipping charge. The delivery cost of ready mixed concrete companies, however, has been decreased owing to their excessive competition in sale. Consequently, ready mixed concrete companies began to manufacture the concrete by mixing ground granulated blast furnace slag(GGBF) and fly-ash in order to lower the production cost. Therefore, the objective of this study was to predict 28 days strength of GGBF slag concrete by early strength(warm and hot water curing method) for the sake of managing with ease the quality of ready mixed concrete. In experimental results, the prediction equation for 28 days compressive strength of GGBF slag concrete could be produced through the linear regression analysis of early strength and 28 days strength. In order to acquire the reliability, all mixture were repeated as 3 times and each mixture order was carried out by random sampling. The prediction equation for 28 days strength of GGBF slag concrete by 1 day compressive strength(accelerated testing) according to warm and hot water curing method won the good reliability.

  • PDF

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.

Shipping Industry Support Plan based on Research of Factors Affecting on the Freight Rate of Bulk Carriers by Sizes (부정기선 운임변동성 영향 요인 분석에 따른 우리나라 해운정책 지원 방안)

  • Cheon, Min-Soo;Mun, Ae-ri;Kim, Seog-Soo
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.4
    • /
    • pp.17-30
    • /
    • 2020
  • In the shipping industry, it is essential to engage in the preemptive prediction of freight rate volatility through market monitoring. Considering that freight rates have already started to fall, the loss of shipping companies will soon be uncontrollable. Therefore, in this study, factors affecting the freight rates of bulk carriers, which have relatively large freight rate volatility as compared to container freight rates, were quantified and analyzed. In doing so, we intended to contribute to future shipping market monitoring. We performed an analysis using a vector error correction model and estimated the influence of six independent variables on the charter rates of bulk carriers by Handy Size, Supramax, Panamax, and Cape Size. The six independent variables included the bulk carrier fleet volume, iron ore traffic volume, ribo interest rate, bunker oil price, and Euro-Dollar exchange rate. The dependent variables were handy size (32,000 DWT) spot charter rates, Supramax 6 T/C average charter rates, Pana Max (75,000 DWT) spot charter, and Cape Size (170,000 DWT) spot charter. The study examined charter rates by size of bulk carriers, which was different from studies on existing specific types of ships or fares in oil tankers and chemical carriers other than bulk carriers. Findings revealed that influencing factors differed for each ship size. The Libo interest rate had a significant effect on all four ship types, and the iron ore traffic volume had a significant effect on three ship types. The Ribo rate showed a negative (-) relationship with Handy Size, Supramax, Panamax, and Cape Size. Iron ore traffic influenced three types of linearity, except for Panamax. The size of shipping companies differed depending on their characteristics. These findings are expected to contribute to the establishment of a management strategy for shipping companies by analyzing the factors influencing changes in the freight rates of charterers, which have a profound effect on the management performance of shipping companies.