• Title/Summary/Keyword: Oil Flow Visualization

Search Result 79, Processing Time 0.029 seconds

Application of various flow visualization techniques on complicated three-dimensional flows (3차원 유동내에서 다양한 유동가시화 기술의 응용)

  • 정진택
    • Journal of the KSME
    • /
    • v.33 no.9
    • /
    • pp.803-810
    • /
    • 1993
  • 벽면에서의 전단응력 분포와 유동장 내에서의 3차원 유동 요소를 추적하는 유동가시화 기법중 에서 몇 가지를 그 응용 예와 함께 살펴보았다. 3차원 유동의 주요 특징들과 한계유선(limiting streamlines)을 관찰하기 위해서는 oil and lampblack 기법이 충분하나 유속이 작거나 유동의 방향이 분명하지 않은 곳에서는 ink dot 기법을 적용하는 것이 좋다. Oil and lampblack 기법은 실험하고자 하는 유동의 조건에 따라 기름과 분말의 혼합비, 기름의 점도 등을 잘 선택하여야 한다. 안장점(Saddle point) 이나 재부착선(reattachment line)과 같이 성격상 중요한지점을 찾기 위해서는 털실 프로브(single tuft probe)가 유용하게 쓰이며, 이는 또 유동내에서 와동의 존재와 위치를 찾는데 쓰이기도 한다. 수치해석 결과 얻을 수 잇는 속도벡터와 같이 비교적 넓은 유동 장을 한눈에 관찰하기 위해서는 털실 격자망 (tuft grid)을 사용할 수 있으며 각 털실은 그 지 점세서의 유동의 방향과 그 안정성(steadiness)를 나타내준다. 이러한 유동가시화 방법들은 각 유동의 특성에 맞는 적절한 조건을 맞추기 위해서 많은 시행착오를 거쳐야 하며, 하나의 만족 스러운 결과를 얻기 위해서는 많은 기술과 시간과 연습을 요구하고 있어서 다른 정량적인 측정 기술과 더불어 커다란 노력과 관심을 기울여서 발전시켜야만 할 것이다.

  • PDF

Experimental Study on the Supersonic Air Intake at Mach 4 (마하4 초음속 공기 흡입구 유동 특성에 관한 실험적 연구)

  • Lee Hyoung-Jin;Jeung In-Seuck;Aso Shigeru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.394-398
    • /
    • 2005
  • Ramjet engine have been usually operated on Mach $1.5\sim3$ as the vehicle of supersonic cruising engine and studied about the higher performance above Mach 4. The research of Duel mode Scramjet engine which have duel operating mode of ramjet/Scramjet are in progress actively nowadays. This paper suggests the effect the flow characteristics and the effects of back pressure, angle of attack, angle of yow on the supersonic air intake on mach 4 through the Schlieren/Oil flow visualization, and pressure measurement on experimental model.

  • PDF

Drag Reduction of a Three-Dimensional Car Model Using Passive Control Device (수동제어 장치를 이용한 3 차원 자동차 모형의 항력감소)

  • Yi, Wook;SaGong, Woong;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2868-2872
    • /
    • 2007
  • In this study, a passive control using a boat-tail device is conducted for a three-dimensional car model in ground proximity. We consider various boat-tails and investigate the mechanism of drag reduction by them. By varying the length and slant angle of boat-tail, we obtain drag reductions up to 40%. From the oil-surface flow visualization and hot-wire measurement, the drag reduction by the boat-tail is characterized by the shear-layer instability and reattachment on the boat-tail, forming a small separation bubble at the upstream part of boat-tail surface, resulting in the delay of main separation and drag reduction. At high slant angles, the flow fully separates and drag is nearly same as that of no control.

  • PDF

Quantitative Visualization of Mixed Convection in 3-D Rectangular Channels Using TLC Tracers (액정을 이용한 3차원 사각채널 내 혼합대류의 정량적 가시화)

  • Piao, Ri-Long;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.51-57
    • /
    • 2016
  • Experiment is carried out to investigate the mixed convective flow in three-dimensional horizontal rectangular channels filled with high viscous fluid. The particle image velocimetry(PIV) with thermo-sensitive liquid crystal tracers is used for visualizing and analysis. Quantitative data of temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. In this study, the fluid used is silicon oil(Pr=909), the aspect ratio(channel width to heigh) is 4 and Reynolds number is $2{\times}10^{-2}$. From the present study, we can visualize the quantitative temperature and velocity of mixed convective flow in three-dimensional horizontal rectangular channels simultaneously.

An experimental study on the secondary flow and losses in turbine cascades (익렬 통로 내의 2차유동 및 손실에 관한 실험 연구)

  • Jeong, Yang-Beom;Sin, Yeong-Ho;Kim, Sang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.12-24
    • /
    • 1998
  • The paper presents the mechanism of secondary flows and the associated total pressure losses occurring in turbine cascades with turning angle of about 127 and 77 degree. Velocity and pressure measurements are taken in seven traverse planes through the cascade passage using a prism type five hole probe. Oil-film flow visualization is also conducted on blade and endwall surfaces. The characteristics of the limiting streamlines show that the three dimensional separation is an important flow feature of endwall and blade surfaces. The larger turning results in much stronger contribution of the secondary flows to the loss developing mechanism. A large part of the endwall loss region at downstream pressure side is found to be very thin when compared to that of the cascade inlet and suction side endwall. Evolution of overall loss starts quite early within the cascade and the rate of the loss growth is much larger in the blade of large turning angle than in the blade of small turning angle.

Velocity Field Measurement of Flow Inside SNOUT of Zinc Plating Process ( I ) (용융아연 도금공정에서의 SNOUT 내부 유동장 해석 ( I ))

  • Shin, Dae Sig;Choi, Jayho;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1265-1273
    • /
    • 1999
  • PIV(Particle Image Velocimetry) velocity field measurements inside the snout of a1/10 scale model of the Zn plating process were carried out at the strip speed $V_s=1.5m/s$. Aluminum powder particles ($1{\mu}m$) and atomized olive oil ($3{\mu}m$) were used as seeding particles to simulate the molten Zinc flow and deoxidization gas flow, respectively. A pulsed Nd:Yag laser and a $2K{\times}2K$ high-resolution CCD camera were synchronized for the PIV velocity field measurement. From flow visualization study, it is found that the liquid flow in the Zn pot is dominantly governed by the uprising flow caused by the rotating sink roll, with its effect on the steel strip inside the snout largely diminished by installing of the snout. The deoxidization gas flow in front of the strip inside the snout can be characterized by a large-scale vortex rotating clockwise direction formed by the moving strip. In the rear side of the strip, a counter-clockwise vortex is formed and some of the flow entrained by the moving strip impinges on the free surface of molten zinc. The liquid flow in front of the strip is governed by the flow entering the snout, caused by the spinning sink roll. Just below the free surface a counter-clockwise vortex is formed near the snout wall. The moving strip affects dominantly the flow behind the strip inside the snout, and large amount of the liquid flow follows the moving strip toward the sink roll. The thickness of the flow following the strip is very thin in the front side due to the uprising flow, however thick boundary layer is formed in the rear side of the strip. Its thickness is increased as moving downstream toward the sink roll. Inside the snout, the deoxidization gas flow above the free surface is much faster than the liquid flow in the zinc pot. Due to the larger influx of the flow following the moving strip in the rear side of the strip, higher percentage of imperfection can be anticipated on the rear surface of the strip.

Heat/Mass Transfer Characteristics on the Squealer Tip Surface of a Turbine Rotor Blade (터빈 동익 스퀼러팁 표면에서의 열(물질)전달 특성)

  • Moon, Hyun-Suk;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • The flow and heat/mass transfer characteristics on the squealer tip surface of a high-turning turbine rotor blade have been investigated at a Reynolds number of $2.09{\times}10^5$, by employing the oil-film flow visualization and naphthalene sublimation technique. The squealer rim height-to-chord ratio and tip gap height-to-chord ratio are fixed as typical values of $h_{st}/c$ = 5.5% and h/c = 2.0%, respectively, for turbulence intensities of Tu = 0.3% and 15%. The results show that the near-wall flow phenomena within the cavity of the squealer tip are totally different from those over the plane tip. There are complicated backward flows from the suction side to the pressure side near the cavity floor, in contrast to the plane tip gap flows moving toward the suction side after flow separation/reattachment. The squealer tip provides a significant reduction in tip surface thermal load with less severe gradient compared to the plane tip. In this study, the tip surface is divided into six different regions, and transport phenomena at each region are discussed in detail. The mean thermal load averaged over the squealer cavity floor is augmented by 7.5 percents under the high inlet turbulence level.

The Thermocapillary Effect on Pure Conduction Mechanism in a Closed Square Cavity (수평 사각밀폐공간내의 전도열전달 기구에서 열모세관효과)

  • Yu, Jae-Bong;An, Do-Won;Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1209-1219
    • /
    • 2005
  • In a closed square cavity filled with a liquid, a cooling horizontal upper wall and a heating lower wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In this mechanism, Ra=1534, Temperature and velocity fields near an air-bubble in silicon-oil under a cooled upper wall were investigated. Temperature and velocity fields is visualized using the thermo-sensitive liquid-crystal and light sheet visualization technique. The quantitative analysis fer the temperature and the flow fields were carried out by applying the image processing technique to the original data. The symmetry shape of two vortexes near an air bubble was observed. As the bubble size increased, the size of vortex and the magnitude of velocity increased. In spite of elapsed time, a pair of vortexes was the unique and steady-state flow in a square cavity and wasn't induced to the other flow in the surround region.

Measurements of Transient Mixing Concentrations between Solid Powder and Liquid Fuel (고체분말/액체연료의 과도혼합 농도 분포 측정)

  • Doh, Deoghee;Yum, Jooho;Cho, Gyeongrae;Min, Seongki;Kim, Myungho;Ryu, Gyongwon;Yoo, Namhyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.678-687
    • /
    • 2012
  • Concentration fields of solid powder in a liquid fuel were quantitatively measured by a visualization technique. The measurement system consists of a camcoder and three LCD monitors. The solid powder (glass powder) were filled in a head tank which was installed over a main mixing tank ($D{\times}H$, $310{\times}370mm$). The main mixing tank was filled with JetA1 fuel oil. With a sudden opening of the upper tank by pressurized nitrogen gas with 1.9 bar, the solid powder were poured into the JetA1 oil. An impeller type agitator was being rotated in the mixing with 700 rpm for the enhancements of mixing. Uniform visualization for the mixing flow field was made by the light from the three LCD monitors, and the visualized images were captured by the camcoder. The color images captured by the camcoder The color information of the captured images was decoded into three principle colors R, G, and B to get quantitattive relations between the concentrations of the solid powder and the colors. To get better fitting for the strong non-linearity between the concentration and the color, a neural network which has strong fitting performances was used. Analyses on the transient mixing of the solid powders were quantitatively made.

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.