• 제목/요약/키워드: Oil Burner

검색결과 60건 처리시간 0.027초

GASIFICATION OF CARBONEOUS WASTES USING THE HIGH TEMPERATURE REFORMER

  • Lee, Dong-Jin
    • Environmental Engineering Research
    • /
    • 제10권3호
    • /
    • pp.122-130
    • /
    • 2005
  • Gasification of carbonaceous wastes such as shredded tire, waste lubricating oil, plastics, and powdered coal initiates a single-stage reforming reactor(reformer) Without catalyst and a syngas burner. Syngas is combusted with $O_2$ gas in the syngas burner to produce $H_2O\;{and}\;CO_2$ gas with exothermic heat. Reaction products are introduced into the reforming reactor, reaction heat from syngas burner elevates the temperature of reactor above $1,200^{\circ}C$, and hydrogen gas fraction reaches 65% of the product gas output. Reactants and heat necessary for the reaction are provided through the syngas burner only. Neither $O_2$ gas nor steam is injected into the reforming reactor. Multiple syngas burners may be connected to the reforming reactor in order to increase the syngas output, and the product syngas is recycled into syngas burner.

연소용 공기 공급 불균일을 고려한 발전 보일러내 연소환경 시뮬레이션 (Computational Simulation of Combustion in Power Plant Boiler Acconling to Un-Even Combustion Air)

  • 고영건;최상민;김영주
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.137-144
    • /
    • 2006
  • Oil-fired power plants usually use several burners and the combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner evenly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and uneven supplies of combustion air to each burner are induced by these unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in the windbox and measured the velocities at the exit of burners in the real windbox to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric and this increases the pollutant products like CO.

  • PDF

연소용 공기 공급 불균일을 고려한 발전 보일러내 연소환경 시뮬레이션 (Computational Simulation of Combustion in Power Plant Boiler According to Un-Even Combustion Air)

  • 고영건;최상민;김영주
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.85-92
    • /
    • 2005
  • Oil-fired power plants usually use several burners and the combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner evenly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and uneven supplies of combustion air to each burner are induced by these unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in the windbox and measured the velocities at the exit of burners in the real windbox to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric and this increases the pollutant products like CO.

  • PDF

SCR 촉매 일체형 덕트 버너 개발에 대한 IoT 기초연구 (IoT Basic Study on Development of Duct Burner Integrated with SCR Catalyst)

  • 장성철;심요섭
    • 사물인터넷융복합논문지
    • /
    • 제7권3호
    • /
    • pp.75-80
    • /
    • 2021
  • NOx의 배출저감 방법으로 선박용 디젤엔진의 최적화만으로는 배기가스의 NOx 배출량 제한을 만족시킬 수 없기 때문에 반드시 배기가스를 후처리하여 NOx를 저감할 수 있는 방안이 요구된다. 본 연구에서는 현재 개발 중에 있는 선박용 SCR 촉매 유닛 일체형 덕트용 오일 버너 시스템에서 요소수를 NH3로 효과적으로 변환하기 위한 이류체 노즐과 믹싱 챔버 덕트에 관한 설계 타당성 여부를 속도분포 및 온도분포에 대한 전산열유동 해석을 통해 검토하고자 한다.

연소개선에 의한 $10MW_{e}$급 발전용 보일러의 NOx 저감 (NOx Reduction in the $10MW_{e}$ Power Boiler by Combustion Improvement)

  • 김태형;김성철;안국영;홍성선
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.26-34
    • /
    • 2000
  • Geometry change of burner nozzle has influence on fuel atomizing and combustion characteristics. NOx reduction technologies can be divided into two method; Before combustion method(NOx treatment of fuel) and After combustion method(NOx treatment of flue gas). In this study, experiments are carried out using difference nozzle and combustion condition change to reduce NOx in heavy oil fired thermal utility boiler. These methods have advantage like easy application and low installation cost. By this method NOx can be reduced by 18% and maintain CO emission level.

  • PDF

Spray Characteristics of Electrostatic Pressure-Swirl Nozzle for Burner Application

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.16-23
    • /
    • 2002
  • Electrostatic pressure-swirl nozzle for practical oil burner application has been designed. The charge injection method has been used in this design, where the nozzle consists of a sharp pointed tungsten wire as a charge injector and the nozzle body grounded. The spray characteristics of the nozzles have been investigated by using an insulating liquid, i.e. kerosene without active surface agent. Breakup length of liquid decreased with an increase in applied voltage and injection pressure, while the spray angle increased with an increased in both applied voltage and injection pressure. An empirical equations have been suggested to predict the breakup length for electrostatic pressure-swirl atomizer. The experimental result was within the range of the predicted equations. The SMD decreased between the ranges of 2.8 ${\sim}$ 33% when the conventional nozzle was compared to the electrostatic with -10 kV applied to the electrode at a radial distance from 5 to 20 mm.

  • PDF

연료전지를 위한 개인용 개질기 (A Personal Reformer(PR) for your Fuel cell system)

  • 김현영
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2004년도 수소연료전지공동심포지움 2004논문집
    • /
    • pp.103-108
    • /
    • 2004
  • The present paper relates to an apparatus in which all carbonaceous material such as coal, oil, plastics and any substance having carbon atoms as part of its constituents are reformed(gasified) into syngas at temperature above $1,200^{\circ}C$(KR patent No.0391121, and PCT/KR2001/01717 and PCT/KR2004/001020). It comprises a single-stage reforming reactor without catalyst and a syngas burner as shown in Fig.2. syngas is combusted with $O_2$ gas in the syngas bunter to produce $M_2O$ and $CO_2$ gas with exothermic heat. Reaction products are introduced into the reforming reactor, reaction heat from syngas burner elevate the temperature of reactor above $1,200^{\circ}C$, and reaction products reduce carbonaceous material down to CO and $H_2$ gases. Reactants and heat necessary for the reaction are provided through the syngas burner only, Neither $O_2$ gas nor steam are injected into the reforming reactor. Reformer is made of ceramic inner lining and sst outer casing. Multiple syngas burners may be connected to the reforming reactor in order to increase the syngas output, and a portion of the product syngas is recycled into syngas burner. The present reformer as shown in Fig.2 is suitable to gasify carbonaceous wastes without secondary pollutants formed from oxidation. Further, it can be miniaturized to accompany a fuel cell system as shown in Fig.3 The output syngas may be used to drive a fuel cell and a portion of electrical power generated in a fuel cell is used to heat a compact reformer up to $1,200^{\circ}C$ so that gas/liquid fossil fuel can efficiently reformed into syngas. The fuel cell serves as syngas burner in Fig.2. The reformation reaction is sustained through recycling a portion of product syngas into a fuel cell and using a portion of electric power generated to heat the reformer for continuous operation. Such reforming reactor may be miniaturized into a size of PC, then you have a Personal Reformer(PR).

  • PDF