• Title/Summary/Keyword: Offshore wind power system

Search Result 145, Processing Time 0.031 seconds

Study of a Photovoltaic System as an Emergency Power Supply for Offshore Plant Facilities (해양플랜트 설비의 비상전원공급을 위한 태양광 발전시스템 연구)

  • Choi, Gun Hwan;Lee, Byung Ho;Jung, Rho-Taek;Shin, Kyubo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • The use of eco-friendly energy in the offshore plant system is expanding because conventional generators are operated by fossil fuel or natural gas. Eco-friendly energy, which replaces existing power generation methods, should be capable of generating the power for lighting protection equipment, airborne fault indication, parameter measurement, and others. Most of the eco-friendly energy used in offshore plant facilities is solar and wind power. In the case of using photovoltaic power, because the structure must be constructed based as flat solar panels, it can be damaged easily by the wind. Therefore, there is a need for a new generation system composed of a spherical structure that does not require a separate structure and is less influenced by the wind. Considering these characteristics, in this study we designed, fabricated, and tested a unit that could provide the most efficient spherical photovoltaic power generation considering wind direction and wind pressure. Our test results indicated that the proposed system reduced costs because it did not require any separate structure, used eco-friendly energy, reduced carbon dioxide emissions, and expanded the proportion of eco-friendly energy use by offshore plant facilities.

Estimation on locations of air-supply and exhaust ports in the nacelle of wind turbine (풍력터빈 나셀 냉각시스템의 급.배기 위치 평가)

  • Woo, S.W.;Kim, H.T.;Lee, J.H.;Lee, K.H.;Park, J.P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.240-242
    • /
    • 2011
  • Wind power system is generally divided into the onshore wind turbine and the offshore wind turbine according to site locations. The offshore wind turbine is manufactured as a closed nacelle cooling system including a heat exchanger to prevent corrosion, but the onshore wind turbine is manufactured as open nacelle cooling system dependent on only the outdoor air without a heat exchanger. The indoor of a nacelle which is composed of a generator, foil power converters and a gearbox with a lot of heat is very narrow and airtight. This aim of the study is to demonstrate the temperature effect depending on positions of air-supply and exhaust ports. And this study discusses the flow field and removal efficiency of heat caused by components.

  • PDF

The Impact of VSC-HVDC Connected an Offshore Wind Power in Voltage Distribution of the AC Power System (해상풍력 연계용 전압형 HVDC가 AC 전력계통의 전압 분포에 미치는 영향)

  • Ban, Seung-Gil;Huh, Jae-Sun;Kang, Byoung-Wook;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.237-238
    • /
    • 2015
  • This paper analyzed the impact of Voltage Sourced Converter High Voltage Direct Current(VSC HVDC) connected an offshore wind power on the Jeju Island electrical power system. Wind power output fluctuates with the changing of wind speed. By changing wind power output occupancy into 100%, 60%, 10% respectively, we can understand the bus voltage distribution controlled by VSC HVDC. PSS/E is used to analyze steady-state simulation results which show effectiveness of the VSC HVDC for Jeju Island power system.

  • PDF

Load and Structural Analysis of an Offshore Wind-Turbine Foundation with Weight Control Functionality (자중조절 기능이 있는 해상풍력 지지구조의 하중 및 구조해석)

  • Oh, Minwoo;Kim, Donghyun;Kim, Kiha;Kim, Seoktae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.453-460
    • /
    • 2016
  • Offshore wind turbines are divided into an upper wind turbine and a lower support structure. Offshore wind turbine system is required to secure high reliability for a variety of external environmental conditions compared to ground wind turbines because of additional periodic loads due to ocean wave and current effects. In this study, extreme load analyses have been conducted for the designed offshore wind turbine foundation with weight control functionality using computational fluid dynamics (CFD) then structural analyses have been also conducted to investigate the structural design requirement.

Control Strategy Compensating for Unbalanced Grid Voltage Through Negative Sequence Current Injection in PMSG Wind Turbines

  • Kang, Jayoon;Park, Yonggyun;Suh, Yongsug;Jung, Byoungchang;Oh, Juhwan;Kim, Jeongjoong;Choi, Youngjoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.244-245
    • /
    • 2013
  • This paper proposes a control algorithm for permanent magnet synchronous generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage offshore wind power system under unbalanced grid conditions. The proposed control algorithm particularly compensates for the unbalanced grid voltage at the point of common coupling in a collector bus of offshore wind power system. This control algorithm has been formulated based on the symmetrical components in positive and negative rotating synchronous reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power are described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of ac input current is injected to the point of common coupling in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm makes it possible to provide a balanced voltage at the point of common coupling resulting in the generated power of high quality from offshore wind power system under unbalanced network conditions.

  • PDF

The Characteristic of the Hub Construction Wind Power Industry of the West-South Seashore with Favorable Products (서남해안 풍력산업 허브 구축사업의 유망 상품의 특성)

  • Cha, In Su;Kim, Taehyung;Lee, Ki Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.179.1-179.1
    • /
    • 2010
  • This paper has represented about the wind power industry of the west-south seashore with leading industry development for Honam Economic Region. These projects have composed of wind power industry of the west-south seashore, offshore wind turbine(2MW, 3MW) and onshore wind turbine(3kW, 5kW, 10kW), 11 projects, during 3 years- with honam leading industry development for economic region. The contents of these project are 3 favorable products and 3 business support projects. The favorable products are the MW offshore wind system with Outer-rotor type PMSG, the 3MWoffshore wind system with adaptation type of west-south sea, the hybrid generator system with wind turbine technology basis.

  • PDF

Development of a Time-Domain Simulation Tool for Offshore Wind Farms

  • Kim, Hyungyu;Kim, Kwansoo;Paek, Insu;Yoo, Neungsoo
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1047-1053
    • /
    • 2015
  • A time-domain simulation tool to predict the dynamic power output of wind turbines in an offshore wind farm was developed in this study. A wind turbine model consisting of first or second order transfer functions of various wind turbine elements was combined with the Ainslie's eddy viscosity wake model to construct the simulation tool. The wind turbine model also includes an aerodynamic model that is a look up table of power and thrust coefficients with respect to the tip speed ratio and pitch angle of the wind turbine obtained by a commercial multi-body dynamics simulation tool. The wake model includes algorithms of superposition of multiple wakes and propagation based on Taylor's frozen turbulence assumption. Torque and pitch control algorithms were implemented in the simulation tool to perform max-Cp and power regulation control of the wind turbines. The simulation tool calculates wind speeds in the two-dimensional domain of the wind farm at the hub height of the wind turbines and yields power outputs from individual wind turbines. The NREL 5MW reference wind turbine was targeted as a wind turbine to obtain parameters for the simulation. To validate the simulation tool, a Danish offshore wind farm with 80 wind turbines was modelled and used to predict the power from the wind farm. A comparison of the prediction with the measured values available in literature showed that the results from the simulation program were fairly close to the measured results in literature except when the wind turbines are congruent with the wind direction.

Design of SCADA System for a Large-Scale Offshore Wind Farm (대규모 해상풍력발전단지 운용을 위한 SCADA 시스템 설계)

  • Kim, Dong Wook;Song, Jae Ju;Jung, Nam Joon;Choi, Hyo Yul
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • In recent years, many researchers and developers have been interested in renewable energy all over the world. Particularly, the development of wind power is being processed actively due to its high economic efficiency. A few years ago, Korean government has started the research for building a large-scale offshore wind farm in domestic west-southern area. Current domestic SCADA technology level for operating wind farm is very low compared with foreign SCADA technology level. In this paper, we found IT issues and solutions for developing SCADA system. Based on these solutions, we designed SCADA system for a large-scale offshore wind farm.

A Study on the Development of Wind Turbine using the lift and drag for the Offshore (양력 및 항력 조합형 해상용 풍력발전기 개발에 관한 연구)

  • Kim, Namhun;Lee, Byeongseong;Yoon, Yangil;Oh, Jinseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.183.3-183.3
    • /
    • 2010
  • This is the research of wind turbine that is designed to supply power to offshore buoy system. In order to reach maximum efficiency in limited space, vertical axis wind turbine was used. Vertical axis wind turbine system that was applied in this research has the form of lift and drag blade combined to achieve high efficiency at both high and low speed. In addition, support system was designed and developed to suit the offshore condition.

  • PDF

Analysis of Dynamic Behavior of Floating Offshore Wind Turbine System (해상 부유식 풍력 타워의 동적거동해석)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • In this study, the dynamic modeling of floating offshore wind turbine system is reported and the dynamic behavior of the platform for the offshore wind turbine system is analyzed. The modeling of the wind load for a floating offshore wind turbine tower is based on the vertical profile of wind speed. The relative Morison equation is employed to obtain the wave load. ADAMS is used to carry out the dynamic analysis of the floating system that should withstand waves and the wind load. Computer simulations for four types of tension leg platforms are performed, and the simulation results for the platforms are compared with each other.