• Title/Summary/Keyword: Offshore installations

Search Result 24, Processing Time 0.023 seconds

Parametric Study on Explosion Impact Response Characteristics of Offshore Installation's Corrugated Blast Wall (해양플랜트 설비 Corrugated Blast Wall의 폭발 충격응답 인자 특성에 관한 파라메트릭 연구)

  • Kim, Bong-Ju;Kim, Byung-Hoon;Sohn, Jung-Min;Paik, Jeom-Kee;Seo, Jung-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.46-54
    • /
    • 2012
  • More than 70% of the accidents that occur on offshore installations stem from hydrocarbon explosions and fires, which, because they involve blast effects and heat, are extremely hazardous and have serious consequences in terms of human health, structural safety, and the surrounding environment. Blast barriers are integral structures in a typical offshore topside module to protect personnel and safety critical equipment by preventing the escalation of events caused by hydrocarbon explosions. Many researchers have shown the adequacy of the simple design tool commonly used by the offshore industry for the analysis and design of blast walls. However, limited information is available for corrugated blast wall design with explosion impact response characteristics. Therefore, this paper presents a parametric study on the explosion impact response characteristics of an offshore installation's stainless steel corrugated blast wall. This paperalso investigates and recommends design parameters for the structural design of a corrugated blast wall based on a nonlinear structural analysis of experiential results.

Numerical Investigation of Residual Strength of Steel Stiffened Panel Exposed to Hydrocarbon Fire

  • Kim, Jeong Hwan;Baeg, Dae Yu;Seo, Jung Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.203-215
    • /
    • 2021
  • Current industrial practices and approaches are simplified and do not describe the actual behavior of plated elements of offshore topside structures for safety design due to fires. Therefore, it is better to make up for the defective methods with integrated fire safety design methods based on fire resistance characteristics such as residual strength capacity. This study numerically investigates the residual strength of steel stiffened panels exposed to hydrocarbon jet fire. A series of nonlinear finite element analyses (FEAs) were carried out with varying probabilistic selected exposures in terms of the jet fire location, side, area, and duration. These were used to assess the effects of exposed fire on the residual strength of a steel stiffened panel on a ship-shaped offshore structure. A probabilistic approach with a feasible fire location was used to determine credible fire scenarios in association with thermal structural responses. Heat transfer analysis was performed to obtain the steel temperature, and then the residual strength was obtained for the credible fire scenarios under compressive axial loading using nonlinear FEA code. The results were used to derive closed-form expressions to predict the residual strength of steel stiffened panels with various exposure to jet fire characteristics. The results could be used to assess the sustainability of structures at risk of exposure to fire accidents in offshore installations.

Collision-Damage Analysis of a Floating Offshore Wind Turbine Considering Ship-Collision Risk

  • Young-Jae Yu;Sang-Hyun Park;Sang-Rai Cho
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.124-136
    • /
    • 2024
  • As the number of offshore wind-power installations increases, collision accidents with vessels occur more frequently. This study investigates the risk of collision damage with operating vessels that may occur during the operation of an offshore wind turbine. The floater used in the collision study is a 15 MW UMaine VolturnUS-S (semi-submersible type), and the colliding ships are selected as multi-purpose vessels, service operation vessels, or anchor-handling tug ships based on their operational purpose. Collision analysis is performed using ABAQUS and substantiation is performed via a drop impact test. The collision analyses are conducted by varying the ship velocity, displacement, collision angle, and ship shape. By applying this numerical model, the extent of damage and deformation of the collision area is confirmed. The analysis results show that a vessel with a bulbous bow can cause flooding, depending on the collision conditions. For damage caused by collision, various collision angles must be considered based on the internal stiffener arrangement. Additionally, the floater can be flooded with relatively small collision energy when the colliding vessel has a bulbous bow.

Study on System Support for Offshore Plant Piping Process Using 3D Simulator

  • Kim, Hyun-Cheol;Lee, Gyu-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.217-226
    • /
    • 2020
  • An offshore plant is an offshore platform that can process oil and gas resources in rough seas with a poor working environment. Moreover, it is a complex structure with different types of offshore facilities and a large amount of outfitting that connects different offshore installations. In particular, an enormous amount of various piping materials is installed in a relatively narrow space, and thus, the difficulty of working is relatively high compared to working in ships or ground plants. Generally, when the 3D detailed design is completed, an offshore plant piping process is carried out at the shipyard with ISO 2D fabrication drawings and ISO 2D installation drawings. If a worker wants to understand the three-dimensional piping composition in the working area, he can only use three-dimensional viewers that provide limited functionality. As offshore plant construction progresses, correlating work with predecessors becomes more complicated and rework occurs because of frequent design changes. This viewer function makes it difficult to identify the 3D piping structure of the urgently needed part. This study deals with the process support method based on a system using a 3D simulator to improve the efficiency of the piping process. The 3D simulator is based on the Unity3D engine and can be simulated by considering the classification and priority of 3D models by the piping process in the system. Further, it makes it possible to visualize progress information of the process. In addition, the punch content can be displayed on the 3D model after the pipe inspection. Finally, in supporting the data in relation to the piping process, it is considered that 3D-simulator-supported piping installing could improve the work efficiency by more than 99% compared to the existing method.

A Study on the Development of Software Supporting the Superstructural Design of Offshore Plant (해양플랜트 상부구조설계 지원 소프트웨어 개발에 대한 연구)

  • Kim, Hyun-Cheol;Kook, Sung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.19-27
    • /
    • 2020
  • On an offshore plant topside, various types of offshore facilities for processing energy resources, such as oil and gas, and equipment and outfitting for connecting these facilities are installed in a limited space. An offshore plant superstructure is composed of numerous supporting rack structures and reinforcements for securing and supporting offshore installations and the related equipment. This paper describes the development of design support software to support this superstructure design efficiently. The developed design support software, which was based on AVEVA Marine's PML(Programmable Macro Language), supports the parametric method for superstructure design. A method of batch 3D modeling from 2D drawings for supporting rack structure produced in the basic and detailed design was also developed using AutoLisp. In addition, through the application example of superstructure module design, the design support software introduced in this paper can be expected to reduce the design time by more than 90% compared to the use of only basic functions of AVEVA PDMS.

Welding Distortion Characteristics of Door Openings According to Changing Shape of Stiffener (Door Opening부의 보강재 형상변화에 따른 용접 변형 특성)

  • Lee, Dong-Hun;Seo, Jung-Kwan;Yi, Myung-Su;Hyun, Chung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.153-160
    • /
    • 2019
  • Welding often results in welding distortion during the assembly process. The welding distortion of thin-plate structures such as the living quarters of ships and offshore installations is a more significant problem than in the case of thick-plate structures. Pre-stressing/heating and fairing, which are additional works to mitigate and control welding distortion, are inevitable, and the construction planning is accordingly delayed. In order to prevent welding distortion and minimize the additional work during the assembly process, increasing the plate thickness and/or the number of stiffeners may be a simple solution, but it may give rise to problems related to cost and weight. In this study, the welding distortion control effect of the type of stiffeners on the door openings of various living quarter structures was investigated using an experimental method and a finite element method. The results showed the feasibility of mitigating and controlling the welding distortion, and the optimum selection of the type of stiffeners was confirmed.

Strength Characteristics of Passive Fire Protection Material Applied Structural Members on Fire Load (수동화재보호 재료가 적용된 구조부재의 화재하중에 대한 강도 특성)

  • Jo, Sang Chan;Yu, Seung Su;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • In offshore installations, fires cause the structure to lose its rigidity and it leads to structural integrity and stability problems. The Passive Fire Protection (PFP) system slows the transfer rate of fire heat and helps prevent the collapse of structures and fatality. Especially, intumescent epoxy coating is widely used in the offshore industry, and not only is the material cost expensive, but it also takes a lot of time and cost for construction. Several studies have been conducted on the efficient application and optimal design of the PFP system. However, the mechanical properties and the strength of the PFP material have not been considered. In addition, researches on the correlation between the thickness of PFP and the structural behavior were insufficient. Therefore, this study aims to analyze the thermal and mechanical effects of the PFP on the structure when it is applied to the structural member. In particular, it is intended to resolve the change in strength characteristics of the structural members as the thickness of the PFP increases.

Fuzzy event tree analysis for quantified risk assessment due to oil and gas leakage in offshore installations

  • Cheliyan, A.S.;Bhattacharyya, S.K.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • Accidental oil and gas leak is a critical concern for the offshore industry because it can lead to severe consequences and as a result, it is imperative to evaluate the probabilities of occurrence of the consequences of the leakage in order to assess the risk. Event Tree Analysis (ETA) is a technique to identify the consequences that can result from the occurrence of a hazardous event. The probability of occurrence of the consequences is evaluated by the ETA, based on the failure probabilities of the sequential events. Conventional ETA deals with events with crisp failure probabilities. In offshore applications, it is often difficult to arrive at a single probability measure due to lack of data or imprecision in data. In such a scenario, fuzzy set theory can be applied to handle imprecision and data uncertainty. This paper presents fuzzy ETA (FETA) methodology to compute the probability of the outcomes initiated due to oil/gas leak in an actual offshore-onshore installation. Post FETA, sensitivity analysis by Fuzzy Weighted Index (FWI) method is performed to find the event that has the maximum contribution to the severe sequences. It is found that events of 'ignition', spreading of fire to 'equipment' and 'other areas' are the highest contributors to the severe consequences, followed by failure of 'leak detection' and 'fire detection' and 'fire water not being effective'. It is also found that the frequency of severe consequences that are catastrophic in nature obtained by ETA is one order less than that obtained by FETA, thereby implying that in ETA, the uncertainty does not propagate through the event tree. The ranking of severe sequences based on their probability, however, are identical in both ETA and FETA.

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.

Seabed Liquefaction with Reduction of Soil Strength due to Cyclic Wave Excitation

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • This study introduces the case of pipelines installed in subsea conditions and buried offshore. Such installations generate pore water pressure under the seabed because of cyclic wave excitation, which is an environmental load, and consistent cyclic wave loading that reduce the soil shear strength of the seabed, possibly leading to liquefaction. Therefore, in view of the liquefaction of the seabed, stability of the subsea pipelines should be examined via calculations using a simple method for buried subsea pipelines and floating structures. Particularly, for studying the possible liquefaction of the seabed in regard to subsea pipelines, high waves of a 10- and 100-year period and the number of occurrences that are affected by the environment within a division cycle of 90 s should be applied. However, when applying significant wave heights (HS), the number of occurrences within a division cycle of 3 h are required to be considered. Furthermore, to research whether dynamic vertical load affect the seabed, mostly a linear wave is used; this is particularly necessary to apply for considering the liquefaction of the seabed in the case of pile structure or subsea pipeline installation.