• Title/Summary/Keyword: Offshore installations

Search Result 23, Processing Time 0.021 seconds

Legal Issues Relating to Artificial Islands, Installations and Structures in the Exclusive Economic Zone or on the Continental Shelf and Korea's Practice (국제해양법상 인공섬, 시설 및 구조물 제도의 쟁점과 우리나라의 입법태도에 관한 고찰 -배타적 경제수역 및 대륙붕을 중심으로)

  • Lee, Yong Hee
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.353-365
    • /
    • 2014
  • Artificial islands, installations and structures have been used as a major means for ocean development and management since the early 20th century. The International legal regime to regulate the man-made offshore structures also have evolved and the UN Convention on the Law of the Sea (UNCLOS) acts as a basic international instrument for that purpose. Although the Convention includes more detailed provisions on man-made offshore structures, there are some legal issues regarding jurisdiction of coastal State on the man-made offshore structures in the Exclusive Economic Zone (EEZ) or on the Continental shelf. For this reason, this article begins by reviewing the 1958 Convention on the Continental shelf and the UNCLOS by focusing on the EEZ and the Continental shelf regime governing the man-made offshore structures. It next examines some controversial international legal issues that have emerged from the regulation of man-made offshore structures in the EEZ or on the Continental shelf. This is followed by a review of the Korean domestic laws regulating artificial islands, installations and structures in the EEZ or on the continental shelf. Finally, it closes by summarizing the findings of the above examinations, and suggests some recommendations for future works.

Applicability of CO2 Extinguishing System for Ships (질식사고 방지용 CO2 소화설비의 선박 적용성)

  • Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.294-300
    • /
    • 2017
  • The offshore installations and ships are the structures most likely to be exposed to hazards such as hydrocarbon fire and/or explosion. Developing proactive measures to prevent the escalation of such events thus requires detailed knowledge of the related phenomena and their consequences. $CO_2$ extinguishing systems are extensively used for fire accidents of on-and offshore installations because of outstanding performance and low cost. There is, however, the risk of carbon dioxide system which enumerates many of the fatalities by suffocation associated with industrial fire protection requirements. Therefore, the aim of this study is to perform the prediction of fire suppression characteristics of the carbon dioxide system in realistic enclosed compartment area of ships and propose $CO_2$ extinguish fire fighting system for preventing suffocation accidents during fire fighting. According to CFD calculations, it can be observed and assessed that various fire profiles with $CO_2$ and $O_2$ mole fraction in the target enclosed compartment area are applicable within the proposed system. Additionally, the design of fire safety system of ships and offshore installations can utilize ventilation system and/or layout arrangement through the proposed system.

Effects of the structural strength of fire protection insulation systems in offshore installations

  • Park, Dae Kyeom;Kim, Jeong Hwan;Park, Jun Seok;Ha, Yeon Chul;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.493-510
    • /
    • 2021
  • Mineral wool is an insulation material commonly used in passive fire protection (PFP) systems on offshore installations. Insulation materials have only been considered functional materials for thermal analysis in the conventional offshore PFP system design method. Hence, the structural performance of insulation has yet to be considered in the design of PFP systems. However, the structural elements of offshore PFP systems are often designed with excessive dimensions to satisfy structural requirements under external loads such as wind, fire and explosive pressure. To verify the structural contribution of insulation material, it was considered a structural material in this study. A series of material tensile tests was undertaken with two types of mineral wool at room temperature and at elevated temperatures for fire conditions. The mechanical properties were then verified with modified methods, and a database was constructed for application in a series of nonlinear structural and thermal finite-element analyses of an offshore bulkhead-type PFP system. Numerical analyses were performed with a conventional model without insulation and with a new suggested model with insulation. These analyses showed the structural contribution of the insulation in the structural behaviour of the PFP panel. The results suggest the need to consider the structural strength of the insulation material in PFP systems during the structural design step for offshore installations.

Development of Gas Detector Location Index Technique to Prevent Explosion Accidents of Offshore Plant (해양플랜트 폭발사고 방지를 위한 가스감지기 위치 선정 방법 연구)

  • Sohn, Jung Min;Paik, Jeom Kee;Kim, Sang Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • Release of hazardous and flammable gas is a significant contributor to risk. The ignition of flammable gas clouds can lead to explosion accidents in the offshore installations. A gas detector, which is one of active protect systems, brings the module into a safe state through emergency shut down processes and reduces the damage by eliminating the dangerous releases. It is critical to understand the gas release, the wind field, and the complex geometry of installations to determine gas detector placement. In this paper, the Gas detector Location Index (GLI) which is a novel index for optimal detector location determination to efficiently prevent explosion accident using probabilistic approach.

Study on Performance of Radiant Heat Shields for Offshore Installations (해양플랜트 복사열 차폐막의 차폐성능에 관한 연구)

  • Kim, Bong Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.330-339
    • /
    • 2019
  • Radiant heat shields are normally installed on offshore oil and gas platforms to protect personnel, equipment, and structures from the thermal radiation emitted by a flare system. A heat shield should be individually designed to reduce the thermal radiation to the target level, and then manufactured and installed after the performance verification. However, in general, a heat shield is designed and manufactured by trial and error based on the performance test. For this reason, it is difficult to develop and design radiant heat shields in the Korean shipbuilding and marine equipment industry because of the lack of performance test data and limited experience. In the present study, the results of experiments conducted to verify the performances of radiant heat shields were analyzed, and the thermal radiation characteristics and performance characteristics of the radiant heat shields were investigated. The insights and conclusions developed in the present study will be useful in terms of the design and development of radiant heat shield, as well as in their performance verification tests.

Risk-Based Design for Ships and Offshore Installations (선박 및 해양설비의 위험도기반설계 기술)

  • Chang Daejun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.113-126
    • /
    • 2005
  • This paper describes introductory remarks on risk management and risk-based design for ships and offshore installations with potential hazards. Clients' requirements on safety and performance was related to the risk management and risk-based design. A general procedure for risk-based design was also suggested with each step explained in detail. Various risk-based design approaches were emphasized with their needs and methodological characteristics taken into account. Related rules, standards, and regulations were summarized. The last part included recommendations for Korean ship building industries about the risk management and risk-based design.

  • PDF

A Research on the Verification Test Procedure for Quantitative Explosion Risk Assessment and Management of Offshore Installations (해양플랜트 폭발사고 위험도 평가/관리를 위한 실증시험기법에 관한 연구)

  • Kim, Bong Ju;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.215-221
    • /
    • 2018
  • The structural design of offshore installations against explosions has been required to protect vital areas (e.g. control room, worker's area etc.) and minimize the damage from explosion accidents. Because the explosion accident will not only result in significant casualties and economic losses, but also cause serious pollution and damage to surrounding environment and coastal marine ecosystems. Over the past two decades, an incredible efforts was made to develop reliable methods to reduce and manage the explosion risk. Among the methods Quantitative Risk Assessment and Management (QRA&M) is the one of cutting-edge technologies. The explosion risk can be quantitatively assessed by the product of explosion frequency based on probability calculation and consequence analyzed using computer simulations, namely Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). However to obtain reliable consequence analysis results by CFD and FEA, uncertainties associate with modeling and simulation are needed to be identified and validated by comparison with experimental data. Therefore, large-scaled explosion test procedure is developed in this study. And developed test procedure can be helpful to obtain precious test data for the validation of consequence analysis using computer simulations, and subsequently allow better assessment and management of explosion risks.

Structural Safety in Installation System for Monopile Basic Construction of Offshore Wind Power Generators (해상풍력발전기 모노파일 기초공사용 설치시스템 구조 안전성)

  • Cha, Tae-Hyeong;Chung, Won-Jee;Lee, Hyun-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, the development of offshore wind farms based on past technical experiences from onshore wind turbine installations has become a worldwide issue. This study investigated the technical issues related to offshore wind farms and large-diameter monopiles from an economic perspective. In particular, the monopile foundation system (MFS), which is the most important part of the proposed fast construction system, is applied for the first time in Korea, and structural verification is essential because it supports large-diameter monopiles and is in charge of excavation. Therefore, in this study, a rapid construction system for large offshore wind power generators was introduced, and stability verification was performed through the structural analysis of the MFS.

Methods for Nonlinear Structural Response Analysis of Offshore Structures with Passive Fire Protection under Fires (해양플랜트 구조물의 화재 사고 시 PFP 효과를 고려한 비선형 구조응답 해석 기법에 대한 연구)

  • Kim, Jeong Hwan;Lee, Dong Hun;Ha, Yeon Chul;Kim, Bong Ju;Seo, Jung Kwan;Paik, Jeom Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.294-305
    • /
    • 2014
  • In offshore structures, fire is one of the most important hazardous events. The concern of fires has recently been reflected in the rules and quantified risk assessment based design practice. Within the framework of quantified risk assessment and the management of offshore installations, therefore, more refined computations of the consequences or hazardous action effects due to fire are required. To mitigate fire risk, passive fire protection(PFP) is widely used on offshore structures. This study presents methods for a nonlinear structural response analysis considering the PFP effects under fires. It is found that a structural response analysis is most likely to use valuable technology for the optimization and design of offshore structures with PFP. Thermal and structural response analyses have been performed using LS-DYNA and FAHTS/USFOS. The results of these structural response analyses are compared with each other.

Field Performance Test of Unit Platform Development for Offshore Floating Photovoltaic Power Structure (부유식 해상태양광 발전을 위한 단위 플랫폼 구조물의 실해역 성능평가)

  • Na, Kyoung Won;Choo, JinHun;Lee, Byung Jun
    • New & Renewable Energy
    • /
    • v.17 no.3
    • /
    • pp.16-23
    • /
    • 2021
  • Recently, the Korean government announced a plan to activate renewable energies, with focus on clean energy sources such as solar and wind power as the core and the goal of achieving carbon neutrality by 2050. Unlike other photovoltaic (PV) systems, offshore PV installations are advantageous for large-scale expansion because of the ease of securing sites; they also enable lowering the power generation costs based on construction of large-scale power facilities of megawatt class or higher owing to low noise and landscape damage. However, any power generation should proceed with consideration of the special environmental conditions of the ocean. Above all, when installing large-scale facilities, it is important to reduce fluctuations of the structure and secure stability to actively respond to waves. This study is concerned with the development of a floating body technology that actively responds to waves so as to enable commercialization of offshore solar power. A unit platform for research and development on offshore PV generation was installed in the Saemangeum sea, and the structural fluctuations and stability were analyzed to ensure conformity with the major performance indicators.