• Title/Summary/Keyword: Offshore floating structures

Search Result 127, Processing Time 0.023 seconds

Experimental study on moonpool resonance of offshore floating structure

  • Yang, Seung-Ho;Kwon, Sun-Hong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.313-323
    • /
    • 2013
  • Offshore floating structures have so-called moonpool in the centre area for the purpose of drilling, installation of subsea structures, recovery of Remotely-Operated Vehicle (ROV) and divers. However, this vertical opening has an effect on the operating performance of floating offshore structure in the vicinity of moonpool resonance frequency; piston mode and sloshing mode. Experimental study based on model test was carried out. Moonpool resonance of floating offshore structure on fixed condition and motion free condition were investigated. And, the effect of cofferdam which is representative inner structure inside moonpool was examined. Model test results showed that Molin's theoretical formula can predict moonpool resonance on fixed condition quite accurately. However, motion free condition has higher resonance frequency when it is compared with that of motion fixed. The installation of cofferdam moves resonance frequency to higher region and also generates secondary resonance at lower frequency. Furthermore, it was found that cofferdam was the cause of generating waves in the longitudinal direction when the vessel was in beam sea.

A theoretical study on the hydroelastic behavior of Large floating offshore structures (대형부체구조물(大型浮體構造物)의 유체(流體)·탄성체(彈性體) 연성거동의 이론적 해석에 관한 연구(硏究))

  • Lee, Sang-Yeob;Rha, Young-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.433-439
    • /
    • 2001
  • A large floating structure is attracting great attention in recent years from the view of ocean space utilization. Its huge scale in the horizontal directions compared with the wavelength and relatively shallow depth make this type of floating structure flexible and its wave-induced motion be characterized by the elastic deformation. In this paper, a boundary integral equation method is proposed to predict the wave-induced dynamic response mat-like floating offshore structure. The structure is modeled as an clastic plate and its elastic deformation is expressed as a superposition of free-vibration modes in air. This makes it straightforward to expand the well-established boundary integral technique for rigid floating bodies to include the hydroelastic effects. In order to validate the theoretical analysis, we compare with the experimental result of previous model test. Satisfactory agreement is found between theory and experiment.

  • PDF

Analytical Discussion on Stochastic Hydrodynamic Modeling of Support Structure of HAWAII WTG Offshore Wind Turbine

  • Abaiee, M.M.;Ahmadi, A.;Ketabdari, M.J.
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • Floating structure such as tension leg platform, semi-submersible and spar are widely used in field of oil exploration and renewable energy system. All of these structures have the base cylinder support structure which have effective rule in overall dynamic of response. So the accurate and reliable modeling is needed for optimum design and understanding the physical background of these systems. The aim of this article is an analytical discussion on stochastic modeling of floating cylinder based support structure but an applicable one. Due to this a mathematical mass-damper-spring system of a floating cylinder of HAWAII WTG offshore wind as an applicable and innovative system is adopted to model a coupled degrees using random vibration in analytical way. A fully develop spectrum is adopted to solve the stochastic spectrum analytically by a proper approximation. Some acceptable assumption is adopted. The simplified but analytical and innovative hydrodynamic analysis of this study not only will help researcher to concentrate more physically on hydrodynamic analysis of floating structures but also can be useful for any quick, simplified and closed form analysis of a complicated problem in offshore engineering.

Wave Response Analysis and Future Direction of Mega-Float

  • Park, Sung-Hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.153-168
    • /
    • 2001
  • In the country where the population concentrates in the metropolis with the narrow land, development of th ocean space is necessary. Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And very large floating structure are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave eternal force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structure part of this model. And the analysis is carried out using the boundary element method in the fluid part. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

A Study on the improvement of element division of hydrid integral method for analyzing of the offshore structures (해양구조물의 동요해석을 위한 Hybrid적분방정식법의 요소분할 개선에 관한 연구)

  • Lee, Sang-Yeob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 1999
  • Recently, It is proceeding the project of offshore structures in the many contury. A hybrid boundary-integral method is developed for computing wave forces on floating bodies. In this method, using the cylindric boundary for deviding elements, it is convenient to analysis but is difficult to apply to the rectangular or slender bodies. Thus, in this paper, I propose the new method by using the fictitious vertical cylinder of arbitary cross-section and shows results of the numerical analysis for testing.

  • PDF

A Study of the Development of a Concrete Floating Breakwater for an Open Sea Fish Farm (외해 양식장 콘크리트 부유식 방파제 개발에 관한 연구)

  • Choi, Gun-Hwan;Kim, Mi-Jeong;Jang, Ki-Ho;Jun, Je-Cheon;Park, Jung-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.648-656
    • /
    • 2019
  • The ecological changes in the ocean due to the drastic global warming require that action be taken to sustain the productivity of fisheries. Proper ocean facilities could help prevent the loss of the expenditures made on marine aquaculture and reduce the related compensation for various ocean conditions. The aim of this study was to develop a floating ocean wave-breaker using an eco-friendly concrete and conducting a site survey, a structural analysis, and a test of towing the tank. As a result, the wave at the fish farm would be reduced. The results of the holding power of anchors and the capability of moving the floating structures were considered in the design of the wave-breaker. The analyses of the material properties of concrete and the steel structures, as well as the CAPEX and OPEX analyses of the manufacturing and operation processes confirmed the superiority of the floating concrete wave-breaker. In particular, this study demonstrated that the concrete floating breakwater can protect the fish farm against typhoons and reverse-waves, thereby reducing losses of the fish.

Hydroelastic analysis of a truss pontoon Mobile Offshore Base

  • Somansundar, S.;Selvam, R. Panneer;Karmakar, D.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.423-448
    • /
    • 2019
  • Very Large Floating Structures (VLFS) are one among the solution to pursue an environmentally friendly and sustainable technology in birthing land from the sea. VLFS are extra-large in size and mostly extra-long in span. VLFS may be classified into two broad categories, namely the pontoon type and semi-submersible type. The pontoon-type VLFS is a flat box structure floating on the sea surface and suitable in regions with lower sea state. The semi-submersible VLFS has a deck raised above the sea level and supported by columns which are connected to submerged pontoons and are subjected to less wave forces. These structures are very flexible compared to other kinds of offshore structures, and its elastic deformations are more important than their rigid body motions. This paper presents hydroelastic analysis carried out on an innovative VLFS called truss pontoon Mobile Offshore Base (MOB) platform concept proposed by Srinivasan and Sundaravadivelu (2013). The truss pontoon MOB is modelled and hydroelastic analysis is carried out using HYDRAN-XR* for regular 0° waves heading angle. Results are presented for variation of added mass and damping coefficients, diffraction and wave excitation forces, RAOs for translational, rotation and deformational modes and vertical displacement at salient sections with respect to wave periods.

Structural integrity of a 2.5-MW spar-type floating offshore wind turbine under extreme environmental conditions

  • Hanjong Kim;Jaehoon Lee;Changwan Han;Seonghun Park
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.461-471
    • /
    • 2023
  • The main objective of this study was to establish design guidelines for three key design variables (spar thickness, spar diameter, and total draft) by examining their impact on the stress distribution and resonant frequency of a 2.5-MW spar-type floating offshore wind turbine substructure under extreme marine conditions, such as during Typhoon Bolaven. The current findings revealed that the substructure experienced maximum stress at wave frequencies of either 0.199 Hz or 0.294 Hz, consistent with previously reported experimental findings. These results indicated that the novel simulation method proposed in this study, which simultaneously combines hydrodynamic diffraction analysis, computational dynamics analysis, and structural analysis, was successfully validated. It also demonstrated that our proposed simulation method precisely quantified the stress distribution of the substructure. The novel findings, which reveal that the maximum stress of the substructure increases with an increase in total draft and a decrease in spar thickness and spar diameter, offer valuable insights for optimizing the design of spar-type floating offshore wind turbine substructures operating in various harsh marine environments.

Hydroelastic Response Characteristics of a Very Large Offshore Structures of Somisubmersible Type in waves (반잠수식 초대형 해양구조물의 파랑중 탄성응답특성)

  • Goo, Ja-Sam;Kim, Kyung-Tae;Hong, Bong-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.19-27
    • /
    • 1999
  • To design a very large floating structure, such as a floating airport, we have to estimate the hydroelastic responses of a very large floating structure (VLFS) exactly. We developed the numerical method for estimating the hydroelastic responses of the VLFS. The developed numerical approach is based on a combination of the three-dimensional source distribution method, the wave interaction theory and the finite element method for structurally treating the space frame elements. The Numerical results of the hydroelastic responses and steady drift forces of a somisubmersible type offshore structure, which is supported by the 33(3 by 11) floating bodies, with various bending rigidities are illustrated.

  • PDF

Hydrodynamic response of alternative floating substructures for spar-type offshore wind turbines

  • Wang, Baowei;Rahmdel, Sajad;Han, Changwan;Jung, Seungbin;Park, Seonghun
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.267-279
    • /
    • 2014
  • Hydrodynamic analyses of classic and truss spar platforms for floating offshore wind turbines (FOWTs) were performed in the frequency domain, by considering coupling effects of the structure and its mooring system. Based on the Morison equation and Diffraction theory, different wave loads over various frequency ranges and underlying hydrodynamic equations were calculated. Then, Response Amplitude Operators (RAOs) of 6 DOF motions were obtained through the coupled hydrodynamic frequency domain analysis of classic and truss spar-type FOWTs. Truss spar platform had better heave motion performance and less weight than classic spar, while the hydrostatic stability did not show much difference between the two spar platforms.