• Title/Summary/Keyword: Offshore Installation

Search Result 225, Processing Time 0.028 seconds

Analysis of Modality and Procedures for CCS as CDM Project and Its Countmeasures (CCS 기술의 CDM 사업화 수용에 대한 방식과 절차 분석 및 대응방안 고찰)

  • Noh, Hyon-Jeong;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.263-272
    • /
    • 2012
  • Carbon dioxide, emitted by human activities since the industrial revolution, is regarded as a major contributor of global warming. There are many efforts to mitigate climate change, and carbon dioxide capture and geological storage (CCS) is recognized as one of key technologies because it can reduce carbon dioxide emissions from large point sources such as a power station or other industrial installation. The inclusion of CCS as clean development mechanism (CDM) project activities has been considered at UNFCCC as financial incentive mechanisms for those developing countries that may wish to deploy the CCS. Although the Conference of the Parties serving as the Meeting of the Parties to the UNFCCC's Kyoto Protocol (CMP), at Cancun in December 2010, decided that CCS is eligible as CDM project activities, the issues identified in decision 2/CMP.5 should be addressed and resolved in a satisfactory manner. Major issues regarding modalities and procedure are 1) Site selection, 2) Monitoring, 3) Modeling, 4) Boundaries, 5) Seepage Measuring and Accounting, 6) Trans-Boundary Effects, 7) Accounting of Associated Project Emissions (Leakage), 8) Risk and Safety Assessment, and 9) Liability Under the CDM Scheme. The CMP, by its decision 7/CMP.6, invited Parties to submit their views to the secretariat of Subsidiary Body for Scientific and Technological Advice (SBSTA), SBSTA prepared a draft modalities and procedure by exchanging views of Parties through workshop held in Abu Dhabi, UAE (September 2011). The 7th CMP (Durban, December 2011) finally adopted the modalities and procedures for CCS as CDM project activities (CMP[2011], Decision-/CMP.7). The inclusion of CCS as CDM project activities means that CCS is officially accredited as one of $CO_2$ reducing technologies in global carbon market. Consequently, it will affect relevant technologies and industry as well as law and policy in Korea and aboard countries. This paper presents a progress made on discussion and challenges regarding the issue, and aims to suggest some considerations to policy makers in Korea in order to demonstrate and deploy the CCS project in the near future. According to the adopted modalities and procedures for CCS as CDM project activities, it is possible to implement relevant CCS projects in Non-Annex I countries, including Korea, as long as legal and regulatory frameworks are established. Though Korea enacted 'Framework Act on Low Carbon, Green Growth', the details are too inadequate to content the requirements of modalities and procedures for CCS as CDM project. Therefore, it is required not only to amend the existing laws related with capture, transport, and storage of $CO_2$ for paving the way of an prompt deployment of CCS CDM activities in Korea as a short-term approach, but also to establish the united framework as a long-term approach.

Numerical Analysis on the Behavior of Revetment Reinforced by Sand Compaction Pile According to Area Replacement Ratio (수치해석을 이용한 모래다짐말뚝 치환율에 따른 호안 구조물의 거동 분석)

  • Kim, Byoung-Il;Bong, Tae-Ho;Han, Jin-Tae;Jang, Young-Eun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • Sand compaction pile (SCP) is a ground improvement method which is used to secure the stability of the soft ground by using a type of replacement pile filled with coarse grained material. The behavior characteristics of the SCP, which is frequently used for improving both the onshore and offshore ground, is governed by the ground condition, the installation method, and replacement ratio. Therefore, the stability of the SCP in terms of the bearing capacity and displacement needs to be evaluated considering both the design values and in-situ conditions of construction site. In this study, numerical analysis is carried out based on the conditions of 00 revetment construction site in South Korea where unexpected displacement occurred during construction of SCP. Based on the analysis results, the displacement of the revetment structure according to the replacement ratio of the SCP was compared to the result calculated from design formulas. The results showed that the lateral displacement can be exceeded the reference value from proposed criteria regardless of increased replacement ratio of SPC. It is also confirmed that the behavior of the structure according to the replacement ratio of SPC in not reflected in the existing calculation methods. Therefore, the stability of the SCP composite ground should be examined through the site inspection after the SCP construction.

Stiffness evaluation of elastomeric bearings for leg mating unit (LMU용 일래스토머릭 베어링의 강성평가)

  • Han, Dong-Seop;Jang, Si-Hwan;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.106-111
    • /
    • 2017
  • In this study, the stiffness of an LMU (Leg Mating Unit), which is a device required for installing the top side part of an offshore structure, was examined through structural analysis. This unit is mounted on the supporting point of the structure and is used to absorb the shock at installation. It is a cylindrical structure with an empty center. To support the vertical load, elastomeric bearings (EBs) and iron plates are laminated in layers. The stiffness of the EBs is basically influenced by the size of the bearings, but it varies with the number of laminated sheets inside the same sized structure. The relationship between the stiffener and the compressive stiffness is investigated, and its design is suggested. The stiffness of the EBs is analyzed by calculating the reaction force, while controlling the displacement. First, the relationship between the size of the reinforcing plate and the compressive stiffness is considered. Next, the relationship between the number of stacked reinforcing plates and the compression stiffness is considered. Different loads are required for each installed point. The goal is to design the compression stiffness in such a way that the same deformation occurs at each point in the analysis. In this study, ANSYS is used to perform the FE analysis.

Bearing Capacity Evaluation of Hybrid Suction Bucket Foundations on Clay Under Horizontal Loads Using a Centrifuge (원심모형실험을 활용한 점토지반에 설치된 하이브리드 석션 버켓기초의 수평방향 지지력 평가)

  • Kim, Jae-Hyun;Lee, Cheol-Ju;Shin, Hee Jeong;Kim, Seong Hwan;Goo, Jeong Min;Jung, Chung Yeol;Jeon, Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.61-73
    • /
    • 2023
  • Suction buckets are feasible options for offshore foundations to support subsea structures in deep water, enabling suction-induced installation by pumps. Recently, hybrid suction bucket foundations that combine single or multiple suction buckets with a mat foundation have been considered. The foundations effectively increase the load capacity while reducing construction costs. However, there is still insufficient experimental validation of hybrid suction bucket foundations regarding their bearing capacity. Furthermore, research on the horizontal load capacity under low vertical and moment loads is inadequate. In this study, we investigate the feasibility of using a hybrid suction bucket foundation for subsea installations in clay. We considered two types of hybrid suction bucket foundations: a circular mat with a single suction bucket and a square mat with multiple buckets. Centrifuge tests were performed to understand the hybrid suction bucket foundation characteristics under horizontal loads and their corresponding bearing capacity. Particularly, we verified the effect of the mat foundation and bucket embedment depth on the horizontal bearing mechanism and capacities. Results confirmed that the hybrid suction bucket foundation outperforms the single suction bucket.

SANET-CC : Zone IP Allocation Protocol for Offshore Networks (SANET-CC : 해상 네트워크를 위한 구역 IP 할당 프로토콜)

  • Bae, Kyoung Yul;Cho, Moon Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.87-109
    • /
    • 2020
  • Currently, thanks to the major stride made in developing wired and wireless communication technology, a variety of IT services are available on land. This trend is leading to an increasing demand for IT services to vessels on the water as well. And it is expected that the request for various IT services such as two-way digital data transmission, Web, APP, etc. is on the rise to the extent that they are available on land. However, while a high-speed information communication network is easily accessible on land because it is based upon a fixed infrastructure like an AP and a base station, it is not the case on the water. As a result, a radio communication network-based voice communication service is usually used at sea. To solve this problem, an additional frequency for digital data exchange was allocated, and a ship ad-hoc network (SANET) was proposed that can be utilized by using this frequency. Instead of satellite communication that costs a lot in installation and usage, SANET was developed to provide various IT services to ships based on IP in the sea. Connectivity between land base stations and ships is important in the SANET. To have this connection, a ship must be a member of the network with its IP address assigned. This paper proposes a SANET-CC protocol that allows ships to be assigned their own IP address. SANET-CC propagates several non-overlapping IP addresses through the entire network from land base stations to ships in the form of the tree. Ships allocate their own IP addresses through the exchange of simple requests and response messages with land base stations or M-ships that can allocate IP addresses. Therefore, SANET-CC can eliminate the IP collision prevention (Duplicate Address Detection) process and the process of network separation or integration caused by the movement of the ship. Various simulations were performed to verify the applicability of this protocol to SANET. The outcome of such simulations shows us the following. First, using SANET-CC, about 91% of the ships in the network were able to receive IP addresses under any circumstances. It is 6% higher than the existing studies. And it suggests that if variables are adjusted to each port's environment, it may show further improved results. Second, this work shows us that it takes all vessels an average of 10 seconds to receive IP addresses regardless of conditions. It represents a 50% decrease in time compared to the average of 20 seconds in the previous study. Also Besides, taking it into account that when existing studies were on 50 to 200 vessels, this study on 100 to 400 vessels, the efficiency can be much higher. Third, existing studies have not been able to derive optimal values according to variables. This is because it does not have a consistent pattern depending on the variable. This means that optimal variables values cannot be set for each port under diverse environments. This paper, however, shows us that the result values from the variables exhibit a consistent pattern. This is significant in that it can be applied to each port by adjusting the variable values. It was also confirmed that regardless of the number of ships, the IP allocation ratio was the most efficient at about 96 percent if the waiting time after the IP request was 75ms, and that the tree structure could maintain a stable network configuration when the number of IPs was over 30000. Fourth, this study can be used to design a network for supporting intelligent maritime control systems and services offshore, instead of satellite communication. And if LTE-M is set up, it is possible to use it for various intelligent services.