• 제목/요약/키워드: Offshore Installation

검색결과 225건 처리시간 0.027초

해저케이블 비용 모델을 이용한 HVAC 해상변전소 적정 위치 선정에 관한 연구 (A Study on Siting of HVAC Offshore Substation for Wind Power Plant using Submarine Cable Cost Model)

  • 원종남;문원식;허재선;김재철
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.451-456
    • /
    • 2013
  • Development of the technologies for offshore wind power is proceeding actively and the installation capacity is continuously increasing because of its many advantages in comparison with the land wind power. Accordingly, project for Southwestern 2.5GW offshore wind power plant is in progress in Korea. Design of electric power systems for offshore wind power plant is very important due to its high investment and operational costs. Hence, it needs to be designed in order to minimize costs. This way can be employed in determining the installation location of offshore substation for HVAC wind power plant. According to the offshore substation site, MV inter-array cable and HV export cable lengths vary and they change a total cost regarding submarine cable. This paper represents cost models with variables which are MV inter-array cable and HV export cable lengths to locate the offshore substation for HVAC wind power plant. It is classified into submarine cable installation cost, reactive power compensator installation cost, ohmic losses, and unsupplied energy cost. By minimizing a total cost, an appropriate installation site of the offshore substation is determined.

Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm

  • Ahn, Dang;Shin, Sung-chul;Kim, Soo-young;Kharoufi, Hicham;Kim, Hyun-cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.45-54
    • /
    • 2017
  • The purpose of this study is to evaluate various means of wind power turbines installation in the Korean west-south wind farm (Test bed 100 MW, Demonstrate site 400 MW). We presented the marine environment of the southwest offshore wind farm in order to decide the appropriate installation vessel to be used in this site. The various vessels would be WTIV (Wind turbine installation vessel), jack-up barge, or floating crane ${\cdots}$ etc. We analyzed the installation cost of offshore wind turbine and the transportation duration for each vessel. The analysis results showed the most suitable installation means for offshore wind turbine in the Korean west-south wind farm.

CAD 정보를 활용한 해양 배관재 설치 준비율 관리 방법에 관한 연구 (A Study on the Installation Readiness Management Method of Offshore Plant using CAD Information)

  • 박중구;김호정;김민규;박지찬
    • 대한조선학회논문집
    • /
    • 제56권2호
    • /
    • pp.152-160
    • /
    • 2019
  • In this study, we propose a piping material supply management method using CAD system. The piping materials installed in super large offshore plants have very complicated connection conditions. Therefore, it is very difficult to determine the order of receipt of a large number of installation materials. Therefore, we have developed a system that can automatically check the preparation rate of installation materials prior to the installation process. We have developed an algorithm to obtain connection information among installation items from PDMS system. We have developed an algorithm that can determine the order of installation materials to be installed using the connection information. The order of the installation material is determined by taking into account the constraint conditions for the complete installation of the piping material. We confirm the effectiveness of the developed algorithms in the operating system. This system is also used to manage installation schedules and plan the installation manpower.

해저 파이프라인 가설 분석 기술 (Advanced Offshore Pipelaying Analysis techniques Part 2 : Laybarge Methods)

  • 최한석
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.7-19
    • /
    • 1995
  • Various laybarge methods for offshore pipeline installation are introduced. Pipe stresses and strains during the installation are discussed with linear and nonlinear analysis methods. Several operational modes of offshore pipeline installation are described. Computer modelling techniques of the pipeline installation analyses are suggested.

  • PDF

A Study on the Application of Skirt Plates on Jacket Support Structures of Offshore Wind Turbines

  • Choi, Byeong-Ryoel;Choi, Han-Sik;Jo, Hyo-Jae;Lee, Sang-Hyep;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.47-52
    • /
    • 2018
  • The Korea Offshore Wind Power (KOWP) is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW in the south-western coast of the country until 2019. Various types of support structures for offshore wind turbines have been proposed in the past. Nevertheless, in South Korea, jacket structures have in general, been applied as support structures for offshore wind turbines owing to the many accumulated experiences and know-how regarding this kind of support structure. The choice of offshore structure is mainly influenced by site conditions such as seabed soil type and sea environment during installation. In installing jacket sets on the seabed, the mudmat is necessary to maintain the equilibrium of the jacket without the aid of additional devices. Hence, this study proposes the installation of skirt plates underneath the bottom frame of jackets in order to improve the installation stability of jacket structures under rougher sea conditions. To confirm the effect of skirt plates, installation stability analyses considering overturning, sliding and bearing capacity have been performed. From the results, it is shown that jacket structures with skirt plates can contribute to improving the sliding stability of the structures of new wind power farms, while providing economic benefits.

New Design for Jacket-type Offshore Wind Turbine Support Structure for Southwest Coast of South Korea

  • Choi, Byeong-Ryoel;Jo, Hyo-Jae;Choi, Han-Sik;Ha, Sung-Yeol;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.184-192
    • /
    • 2017
  • The Korea Offshore Wind Power (KWOP) cooperation is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW along the southwestern coast by 2019. Hitherto, various structural types of support structures for offshore wind turbines have been being proposed, but these structures have lacked economic analysis studies. Therefore, their economical superiority to existing types has been difficult to guarantee. An offshore structure with economic efficiency will have a minimum amount of mobilizing equipment and short offshore construction period because of the application of rapid installation methods. Thus, the development of a new support structure with economic efficiency is generally considered to be necessary. Accordingly, this paper proposes a newly developed and more economical jacket type for the offshore support structure. This study confirmed its structural safety and performance by conducting a structural analysis and eigenvalue analysis. The manufacturing and installation costs were then estimated. As a result, the new jacket type of offshore support structure proposed in this study significantly reduced the manufacturing and installation costs. Therefore, it is expected that the proposed jacket will contribute to reducing construction expenses for new wind power farms and invigorating wind power farm businesses.

해상풍력타워 석션기초의 설치시 거동에 대한 모형 시험 연구 (Installation of Suction Caisson Foundation for Offshore Wind Turbine : Model Test)

  • 김동준;김수린;추연욱;김동수;이만수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.825-839
    • /
    • 2010
  • The global and domestic market for offshore wind farm is expected to grow fast, and the design and installation of substructure and foundation is getting more important. As for the offshore wind farms located in the shallow(depth < 20m) water, the construction and installation of the substructure and foundation makes up about 1/4 ~1/3 of the offshore wind farm construction cost, and the portion is expected to increase because the turbine capacity is increasing from 2 ~ 3MW to 5MW or larger and the water depth of wind farms is also increasing over 30m. As a foundation for offshore wind turbine, the suction caisson foundation is being considered to be a highly competitive alternative to the conventional monopile or gravity based structure, because it has features suitable for the offshore construction such as quick installation, no heavy equipment for penetration and no hammering noise for driving. In order to study the installation behaviour of the suction caisson, laboratory tests were performed with sand. The pore water pressure and displacement were measured to analyze the suction pressure during penetration, the penetration speed and the amount of heaving.

  • PDF

An optimum design of on-bottom stability of offshore pipelines on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Do, Chang Ho;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.598-613
    • /
    • 2013
  • This paper deals with the dynamic effect of pipeline installation and embedment for the on-bottom stability design of offshore pipelines on soft clay. On-bottom stability analysis of offshore pipelines on soft clay by DNV-RP-F109 (DNV, 2010) results in very unreasonable pipe embedment and concrete coating thickness. Thus, a new procedure of the on-bottom stability analysis was established considering dynamic effects of pipeline installation and pipe-soil interaction at touchdown point (TDP). This analysis procedure is composed of three steps: global pipeline installation analysis, local analysis at TDP, modified on-bottom stability analysis using DNV-RP-F109. Data obtained from the dynamic pipeline installation analysis were utilized for the finite element analysis (FEA) of the pipeline embedment using the non-linear soil property. From the analysis results of the proposed procedure, an optimum design of on-bottom stability of offshore pipeline on soft clay can be achieved. This procedure and result will be useful to assess the on-bottom stability analysis of offshore pipelines on soft clay. The analysis results were justified by an offshore field inspection.

Safety Analysis for Installation of Offshore Structure based on Proportional-Derivative Control Strategy with Multibody System

  • Cha, Ju-Hwan;Nam, Bo-Woo;Ha, Sol
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.35-46
    • /
    • 2018
  • In this paper, safety analysis of the process of installing offshore structures such as manifolds and jacket-type substructures using floating cranes and barges in waves is performed. The safety analysis consists of three components. First, the dynamic responses of the offshore structure, cranes, and barge, all of which are moored and connected using wire ropes, are analyzed. Second, tensions in the wire ropes connecting the cranes and the offshore structures are calculated. Finally, any collision between the offshore structure and the cranes or the barge that transports the offshore structure is detected. Equations of motion of the offshore structure, cranes, and barge are formulated based on multibody dynamics, as well as considering the hydrostatic, hydrodynamic, and mooring forces. Additionally, proportional-derivative control of the tagline between the cranes and the offshore structure is performed to verify the safety of the installation process, as well as for reducing the dynamic response and collisions among them.

자중조절형 해상풍력 지지구조 개념설계 및 부유이송 현장시험 (Conceptual Design of Self-Weighing Support Structure for Offshore Wind Turbines and Self-Floating Field Test)

  • 김석태;김동현;강금석;정민욱
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권4호
    • /
    • pp.631-638
    • /
    • 2016
  • 해상풍력발전은 경관 및 소음 등의 문제 및 풍황자원 고갈로 인한 사업부지 확보가 어려운 육상풍력발전의 대안으로 주목받고 있다. 해상풍력은 해상에 풍력터빈을 세우기 때문에 경관 훼손이나 소음으로 인한 민원발생이 적고 상대적으로 풍황자원이 풍부하기 때문에 발전생산성이 높다. 그러나 육상풍력에 비해 해상풍력은 설치비가 높아 경제성이 떨어뜨리는 요인으로 작용한다. 이러한 높은 설치비는 해상작업에 필요한 대형장비의 대여기간과 높은 대여료에서 기인하는데, 본 논문에서는 대형 해상장비의 사용을 최소화하여 설치할 수 있는 해상풍력 지지구조의 개념설계를 수행하였다.