• Title/Summary/Keyword: Offshore Foundations

Search Result 68, Processing Time 0.021 seconds

The Development of the Foundation of Offshore Wind Turbines (해상풍력발전용 Foundation에 관한 해외 동향)

  • Wei, Shi;Park, Hyun-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.290-294
    • /
    • 2008
  • Offshore wind farms will contribute significantly to the renewable generation of electricity for the world. The economic development of wind farms depends, however, on development of efficient solutions to a number of technical issues, one of these being the foundations for the offshore turbines. We review here the results of recent research for wind turbine foundations. Also it is a short overview of some of the challenges facing the growth of offshore wind energy foundation technology.

  • PDF

Foundation Types of Fixed Offshore Wind Turbine

  • Yun Jae Kim;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.74-85
    • /
    • 2024
  • Offshore wind turbines are supported by various foundations, each with its considerations in design and construction. Gravity, monopile, and suction bucket foundations encounter geotechnical issues, while jacket and tripod foundations face fatigue problems. Considering this, a gravity foundation based on a steel skirt was developed, and a monopile foundation was analyzed for Pile-Soil Interaction using the p-y curve and 3D finite element method (3D FEM). In addition, for suction bucket foundations, the effects of lateral and vertical loads were analyzed using 3D FEM and centrifuge tests. Fatigue analysis for jacket and tripod foundations was conducted using a hotspot stress approach. Some hybrid foundations and shape optimization techniques that change the shape to complement the problems of each foundation described above were assessed. Hybrid foundations could increase lateral resistance compared to existing foundations because of the combined appendages, and optimization techniques could reduce costs by maximizing the efficiency of the structure or by reducing costs and weight. This paper presents the characteristics and research directions of the foundation through various studies on the foundation. In addition, the optimal design method is presented by explaining the problems of the foundation and suggesting ways to supplement them.

Wind energy into the future: The challenge of deep-water wind farms

  • Ricciardelli, Francesco;Maienza, Carmela;Vardaroglu, Mustafa;Avossa, Alberto Maria
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.321-340
    • /
    • 2021
  • In 2019, 5.6% of the total energy produced worldwide came from wind. Offshore wind generation is still a small portion of the total wind generation, yet its growth is exponential. Higher availability of sites, larger producibility and potentially lower environmental impacts make offshore wind generation attractive. On the other hand, as the water depth increases, fixed foundations are no more viable, and the new frontier is that of floating foundations. This paper brings an overview of why and how offshore wind energy should move deep water; it contains material from the Keynote Lecture given by the first author at the ACEM20/Structures20 Conference, held in Seoul in August 2020. The paper is organized into four sections: the first giving general concepts about wind generation especially offshore, the second and the third considering economic and technical aspects, respectively, of offshore deep-water wind generation, in the fourth, some challenges of floating offshore wind generation are presented and some conclusions are drawn.

Analysis on the Change of Wave Behaviour Due to Installation of Offshore Wind Turbine Foundations (해상풍력터빈 기초 구조물 설치로 인한 파랑거동 변화 검토)

  • Kim, Ji-Young;Kang, Keum-Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.306-315
    • /
    • 2010
  • As developing the large-scale offshore wind farm is expected, the preliminary environmental impact assessment is very essential. In this study, the wave hindcast model is verified based on observed data at the coast around Wido which is among the candidate sites for developing the offshore wind farm. In addition, the effect of the wind turbine foundations on wave height is analyzed when total 35 wind turbines including monopile foundations of 5 m in diameter are installed. Calculation result of significant wave height is in good accord with observed data since the RMS error is 0.35 m. Moreover, it is found that the presence of the wind turbine foundations hardly affects wave height as wave damping ratio is less than 1%.

Buckling of monopod bucket foundations-influence of boundary conditions and soil-structure interaction

  • Madsen, Soren;Pinna, Rodney;Randolph, Mark;Andersen, Lars V.
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.641-656
    • /
    • 2015
  • Using large monopod bucket foundations as an alternative to monopiles for offshore wind turbines offers the potential for large cost savings compared to typical piled foundations. In this paper, numerical simulations are carried out to assess the risk of structural buckling during installation of large-diameter bucket foundations. Since shell structures are generally sensitive to initially imperfect geometries, eigenmode-affine imperfections are introduced in a nonlinear finite-element analysis. The influence of modelling the real lid structure compared to classic boundary conditions is investigated. The effects of including soil restraint and soil-structure interaction on the buckling analysis are also addressed.

Undrained and Drained Behaviors of Laterally-loaded Offshore Piles (배수조건에 따른 측방유동 해상말뚝의 거동특성)

  • Seo, Dong-Hee;Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.149-160
    • /
    • 2008
  • Offshore pile foundations are prone to lateral soil pressures resulting from embankment construction for the reclamation on deepwater soft clay. Since the 1990s, offshore reclamation has actively progressed in Korea, connecting with the development of Songdo newtown, Incheon newport, and Busan newport representatively. Special attention has been given to lateral soil-structure interaction problems related to passively-loaded offshore pile foundations. Based on a plane strain large deformation finite element (LDFE) approach, this paper presents the results of investigation into undrained (short-term) and drained (long-term) behavior of passively-loaded offshore pile foundations. This study examines the effects of major factors, such as soil profile, pile head boundary condition, magnitude of embankment load, and average degree of consolidation. The results allowed quantification of differences in the magnitude of lateral soil pressure acting on the piles between undrained and drained phases.

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

Scour-monitoring techniques for offshore foundations

  • Byuna, Yong-Hoon;Parkb, Kiwon;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.667-681
    • /
    • 2015
  • The scour induced by strong currents and wave action decreases the embedded length of monopiles and leads to a decrease of their structural stability. The objective of this study is the development and consideration of scour-monitoring techniques for offshore monopile foundations. Tests on physical models are carried out with a model monopile and geo-materials prepared in a cylindrical tank. A strain gauge, two coupled ultrasonic transducers, and ten electrodes are used for monitoring the scour. The natural frequency, ultrasonic reflection images, and electrical resistivity profiles are obtained at various scour depths. The experimental results show that the natural frequency of the model monopile decreases with an increase in the scour depth and that the ultrasonic reflection images clearly detect the scour shape and scour depth. In addition, the electrical resistivity decreases with an increase in scour depth. This study suggests that natural frequency measurement, ultrasonic reflection imaging, and electrical resistivity profiling may be used as effective tools to monitor the scour around an offshore monopile foundation.

A Study on the Suitability of Suction Caisson Foundation for the 5Mw Offshore Wind Turbine (5MW급 해상풍력발전시스템용 Suction Caisson 하부구조물 적합성 연구)

  • Kim, Yong-Chun;Chung, Chin-Wha;Park, Hyun-Chul;Lee, Seunug-Min;Kwon, Dae-Yong;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2010
  • Foundation plays an important role in the offshore wind turbine system. Different from conventional foundations, the suction caisson is proven to be economical and reliable. In this work, three-dimensional finite element method is used to check the suitability of suction caisson foundation. NREL 5MW wind turbine is chosen as a baseline model in our simulation. The maximum overturning moment and vertical load at the mudline are calculated using FAST and Bladed. Meanwhile the soil-structure interaction response from our simulation is also compared with the experiment data from Oxford university. The design parameter such as caisson length, diameter of skirt and spacing of multipod are investigated. Accordingly based on these parameters suggestions are given to use suction caisson foundations more efficiently.