• Title/Summary/Keyword: Offshore Crane System

Search Result 15, Processing Time 0.026 seconds

Development of Exclusive System for Basic Design of Offshore Bridge Crane (Offshore bridge crane의 설계 기초값 산출을 위한 전용시스템 개발)

  • Park, Se-Myoung;Lee, Won-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • Offshore Bridge Crane and Hoist which are used FPSO Ships that can move through self - power and have oil production, store and loading and unloading facilities are increasing demand. These equipments must use Crane safely by pitch and rolling of the high wave. For this, they have to be equipped with high durability and safety. So the advanced shipbuilding industries use a private design system which can be prompt in design and analyze in the first stage. For this study, It was developed a basic design system for "Bridge Crane and Hoist" used on FPSO ships. By developing this automated system for "Bridge Crane and Hoist" design, we will be able to make the design data easy to understand. This basic design system will help reduce the amount of working time it takes to design new systems, construct design databases and get approval for the finished design.

Heave Compensation System Design for Offshore Crane based on Input-Output Linearization

  • Le, Nhat-Binh;Kim, Byung-Gak;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2017
  • A heave motion of the offshore crane system with load is affected by unpredictable external factors. Therefore the offshore crane must satisfy rigorous requirements in terms of safety and efficiency. This paper intends to reduce the heave displacement of load position which is produced by rope extension and sea wave disturbance in vertical motion. In this system, the load position is compensated by the winch actuator control. The rope is modeled as a mass-damper-spring system, and a controller is designed by the input-output linearization method. The model system and the proposed control method are evaluated on the simulation results.

A Study on Load Vibration Control in Crane Operating

  • Le, Nhat-Binh;Lee, Dong-Hun;Kim, Tae-Wan;Kim, Young-Bok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.58-60
    • /
    • 2017
  • In the offshore crane system, the requirements on the operating safety are extremely high due to many external factors. This paper describes a model for studying the dynamic behavior of the offshore crane system. The obtained model allows to evaluate the fluctuations of the load arising from the elasticity of the rope. Especially, in this paper, the authors design control system in which just winch rotation angle and rope tension are used without load position information. The controller design based on input-output feedback linearization theory is presented which can handle the effect of the elasticity of the rope and track the load target trajectory input. Besides that, a full order observer is designed to estimate unknown states. Finally, By the experiment results, the effectiveness of proposed control method is evaluated and verified.

  • PDF

A study on the modeling and dynamic analysis of the offshore crane and payload (해상작업용 크레인의 모델링과 부하운동 특성해석에 관한 연구)

  • LEE, Dong-Hun;KIM, Tae-Wan;PARK, Hwan-Cheol;KIM, Young-Bok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.1
    • /
    • pp.61-70
    • /
    • 2020
  • In this study, system modeling and dynamic analysis of crane are conducted. Especially, among many different kinds of a crane system, the issues on crane operating problems installed on the vessel are considered. As well known, marine systems including cranes are exposed to various disturbances such as vessel motions, hydrodynamic forces, wave and wind attack, etc. In order to analysis the system dynamic with environmental conditions, the authors derived the nonlinear dynamic model of offshore crane and derived a linear model which is used for designing the control system. Using the obtained nonlinear and linear models, simulations were conducted to evaluate the usefulness of the obtained models. By simulation and result evaluation, the usefulness of the linear model, which presents the dynamics, is effectively verified.

Numerical Analysis of Offshore Installation Using a Floating Crane with Heave Compensator in Waves (Heave Compensator를 고려한 파랑 중 해상 크레인 설치작업 수치해석)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Jong-Wook;Lee, Dong-Yeop
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.70-77
    • /
    • 2012
  • In this study, a numerical analysis of offshore installation using a floating crane with heave compensator is carried out in time domain. The motion analysis of crane vessels is based on floating body dynamics using convolution integral and the crane wire is treated as simple spring. The lifted structure is assumed as a rigid body with 3 degree-of-freedom translational motion. The heave compensator is numerically modelled by the generalized spring-damper system. Firstly, forced motion simulations of crane wire system are carried out to figure out the basic principle of heave compensator. The transfer function of crane wire system is obtained and effective wave period of heave compensator are found. Then, coupled analysis of crane vessel, crane wire, and lifted structure are performed in regular and irregular sea conditions. Two different crane vessels and two lifted structures (suction pile and manifold) are considered in this study. Through a series of numerical calculations, the effective zone of heave compensator is investigated with respect to wave period and crane wire length.

A Study on the optimal design of lattice boom crane for offshore plant (해양플랜트용 라티스 붐 크레인의 최적 설계에 관한 연구)

  • Kim, Hyun-ji;Kim, Ji-hye;Park, Sang-hyeok;Choi, Si-yeon;Huh, Sun-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.757-765
    • /
    • 2019
  • In manufacturing An offshore plant is a structure that produces resources buried in the seabed. It can be classified into fixed, floating, and hybrid methods depending on the installation method. In particular, the Lattice boom type crane is typically used because it is used for a long time in the sea and moves to other seas, which is less affected by wind. In this study, the crane was designed by using three-step optimization design in the early stage of the design of Lattice boom crane for offshore plant. Finite element analysis was performed to verify the safety factor, deflection, buckling coefficient and fatigue life of the designed crane and the results were verified.

Load Position and Residual Vibration Control of an Offshore Crane System Based on Input-Output Linearization Theory

  • Le, Nhat-Binh;Lee, Kwon-Soon;Kim, Young-Bok
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.337-344
    • /
    • 2017
  • In the offshore crane system, the requirements on the operating safety are extremely high due to many external factors. Rope extension is one of the factors producing vertical vibration of load. In this study, the load is carried by the motor-winch actuator control and the rope is modeled as a mass-damper-spring system. To control the load position and suppress the vertical vibration of the load, a control system based on input-output linearization method is proposed. By the simulation and experiment results with pilot crane model, the effectiveness of proposed control method is evaluated and verified.

A Development of an Integrated Inventory Managing System for Steel-Plates (강재 통합 관리 시스템 개발)

  • Lee, Seok Hyun;Yu, Ji Hun;Kim, Hyun Chul;Jang, Seok Min;Lim, Rae Soo;Kim, Ho Kyeong;Heo, Joo Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • As one of the largest shipbuilding company in the world, STX Offshore & Shipbuilding currently developed an inventory managing system for steel-plates, which is applied to their steel stock yard. In a traditional way to manage steel yard, almost every work has been done by manually. The manual steel-plate piling process caused some problems such as process delay due to piling errors and the uncertainty of work plan due to lack of information. To solve these problems, we developed an integrated inventory managing system based on real-time crane tracking system which automatically updates steel-plates' piling status. We built the integrated steel-plate database, developed several programs including steel-plate input program, real-time steel-plate monitoring program and steel-yard management program, and constructed hardware system for tracking magnetic cranes. As a result, a supervisor of steel-yard can manage the inventory of steel-plates efficiently and furthermore plan an efficient piling schedule and crane working schedule.

The Stability Analysis of Offshore Lattice Boom Crane (해양플랜트용 격자 붐 크레인의 안전성 평가)

  • Kim, Ji-Hye;Jung, Yong-Gil;Huh, Sun-Chul
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2018
  • The safety of structure was evaluated by taking into consideration the complex marine environmental conditions of the Lattice boom crane, which is widely used in offshore plants due to less influence by wind. CFX analysis was carried out to take into account the influence of wind speed, and the result was applied as a boundary condition to perform static analysis according to the luffing angles of $28^{\circ}$, $61^{\circ}$, and $80^{\circ}$ in the on board and off board, respectively. In addition, the Lattice Boom Crane is large slender structure, and the possibility of buckling is interpreted under three conditions where the biggest stress occurs. All conditions satisfied the safety requirements of the Classification Regulations. Also, as a result of the buckling analysis, the load less than the critical load was applied so buckling does not occur.

A Heave Compensation System for Offshore Crane (해상 크레인의 상하동요 보상 시스템의 능동제어)

  • Seong, Hyung-seok;Choi, Hyeong-sik;Jeong, Seong-hoon;Lee, Sang-ki
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.175-181
    • /
    • 2016
  • This paper introduces a heave compensation system for offshore crane when it gets unexpected disturbances and external force. The dynamic model consists of crane assumed to be the rigid body, hydraulic driven winch, elastic rope and payload. To keep the payload from moving up and down, PD control algorithm is applied. By using the control, the oscillating amplitude of the payload is reduced. Also by using the estimated values involved with time-delay, the relative motion of payload in heave direction is dramatically shortened. This paper shows using the control algorithm with estimated value having time-delay 0.1 second is enough to heave compensation system.