• 제목/요약/키워드: Offset optimization

Search Result 80, Processing Time 0.03 seconds

Analytical methods for determining the cable configuration and construction parameters of a suspension bridge

  • Zhang, Wen-ming;Tian, Gen-min;Yang, Chao-yu;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.603-625
    • /
    • 2019
  • Main cable configurations under final dead load and in the unloaded state and critical construction parameters (e.g. unstrained cable length, unstrained hanger lengths, and pre-offsets for tower saddles and splay saddles) are the core considerations in the design and construction control of a suspension bridge. For the purpose of accurate calculations, it is necessary to take into account the effects of cable strands over the anchor spans, arc-shaped saddle top, and tower top pre-uplift. In this paper, a method for calculating the cable configuration under final dead load over a main span, two side spans, and two anchor spans, coordinates of tangent points, and unstrained cable length are firstly developed using conditions for mechanical equilibrium and geometric relationships. Hanger tensile forces and unstrained hanger lengths are calculated by iteratively solving the equations governing hanger tensile forces and the cable configuration, which gives careful consideration to the effect of hanger weight. Next, equations for calculating the cable configuration in the unloaded state and pre-offsets of saddles are derived from the cable configuration under final dead load and the conditions for unstrained cable length to be conserved. The equations for the main span, two side spans and two anchor spans are then solved simultaneously. In the proposed methods, coupled nonlinear equations are solved by turning them into an unconstrained optimization problem, making the procedure simplified. The feasibility and validity of the proposed methods are demonstrated through a numerical example.

Optimization of Optical Coupling Properties of Active-Passive Butt Joint Structure in InP-Based Ridge Waveguide (InP계 리지 도파로 구조에서 활성층-수동층 버트 조인트의 광결합 효율 최적화 연구)

  • Song, Yeon Su;Myeong, Gi-Hwan;Kim, In;Yu, Joon Sang;Ryu, Sang-Wan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • Integration of active and passive waveguides is an essential component of the photonic integrated circuit and its elements. Butt joint is one of the important technologies to accomplish it with significant advantages. However, it suffers from high optical loss at the butt joint junction and need of accurate process control to align both waveguides. In this study, we used beam propagation method to simulate an integrated device composed of a laser diode and spot size converter (SSC). Two SSCs with different mode properties were combined with laser waveguide and optical coupling efficiency was simulated. The SSC with larger near field mode showed lower coupling efficiency, however its far field pattern was narrower and more symmetric. Tapered passive waveguide was utilized for enhancing the coupling efficiency and tolerance of waveguide offset at the butt joint without degrading the far field pattern. With this technique, high optical coupling efficiency of 89.6% with narrow far field divergence angle of 16°×16° was obtained.

Traffic Signal Control Strategy for Passive Tram Signal Priority on City Arterial (도시부 간선도로의 고정식 트램 우선신호를 위한 교통신호운영 전략)

  • Jeong, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.27-41
    • /
    • 2011
  • This research proposes new tram signal coordination model, called MAXBAND MILP-Tram for a passive tram signal priority strategy. The proposed model was formulated based on the MAXBAND model that was a traditional arterial signal optimization model. The model could calculate the bandwidth solutions for both general-purpose-lane traffic and median-tram-lane traffic. Lower progression speed are applied for the tram traffic considering lower running speed and dwell time at the stations. A phase sequence procedure determines the green times and left-turn phase sequences for tram traffic in median tram lane. To estimate the performance of the MILP-Tram model, the control delay of trams were estimated using the micro simulation model, VISSIM. The analysis results showed 57 percent decrease of the tram compared to the conventional signal timing model. The delay for car, however, increased 18 percent. The sensitivity analysis indicated that the passive tram signal priority strategy using the offset and phase sequence optimization was effective in reducing the person delay under the congested traffic condition.

Optimization of highly scalable gate dielectrics by stacking Ta2O5 and SiO2 thin films for advanced MOSFET technology

  • Kim, Tae-Wan;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.259-259
    • /
    • 2016
  • 반도체 산업 전반에 걸쳐 이루어지고 있는 연구는 소자를 더 작게 만들면서도 구동능력은 우수한 소자를 만들어내는 것이라고 할 수 있다. 따라서 소자의 미세화와 함께 트랜지스터의 구동능력의 향상을 위한 기술개발에 대한 필요성이 점차 커지고 있으며, 고유전(high-k)재료를 트랜지스터의 게이트 절연막으로 이용하는 방법이 개발되고 있다. High-k 재료를 트랜지스터의 게이트 절연막에 적용하면 낮은 전압으로 소자를 구동할 수 있어서 소비전력이 감소하고 소자의 미세화 측면에서도 매우 유리하다. 그러나, 초미세화된 소자를 제작하기 위하여 high-k 절연막의 두께를 줄이게 되면, 전기적 용량(capacitance)은 커지지만 에너지 밴드 오프셋(band-offset)이 기존의 실리콘 산화막(SiO2)보다 작고 또한 열공정에 의해 쉽게 결정화가 이루어지기 때문에 누설전류가 발생하여 소자의 열화를 초래할 수 있다. 따라서, 최근에는 이러한 문제를 해결하기 위하여 게이트 절연막 엔지니어링을 통해서 누설전류를 줄이면서 전기적 용량을 확보할 수 있는 연구가 주목받고 있다. 본 실험에서는 high-k 물질인 Ta2O5와 SiO2를 적층시켜서 누설전류를 줄이면서 동시에 높은 캐패시턴스를 달성할 수 있는 게이트 절연막 엔지니어링에 대한 연구를 진행하였다. 먼저 n-type Si 기판을 표준 RCA 세정한 다음, RF sputter를 사용하여 두께가 Ta2O5/SiO2 = 50/0, 50/5, 50/10, 25/10, 25/5 nm인 적층구조의 게이트 절연막을 형성하였다. 다음으로 Al 게이트 전극을 150 nm의 두께로 증착한 다음, 전기적 특성 개선을 위하여 furnace N2 분위기에서 $400^{\circ}C$로 30분간 후속 열처리를 진행하여 MOS capacitor 소자를 제작하였고, I-V 및 C-V 측정을 통하여 형성된 게이트 절연막의 전기적 특성을 평가하였다. 그 결과, Ta2O5/SiO2 = 50/0, 50/5, 50/10 nm인 게이트 절연막들은 누설전류는 낮지만, 큰 용량을 얻을 수 없었다. 한편, Ta2O5/SiO2 = 25/10, 25/5 nm의 조합에서는 충분한 용량을 확보할 수 있었다. 적층된 게이트 절연막의 유전상수는 25/5 nm, 25/10 nm 각각 8.3, 7.6으로 비슷하였지만, 문턱치 전압(VTH)은 각각 -0.64 V, -0.18 V로 25/10 nm가 0 V에 보다 근접한 값을 나타내었다. 한편, 누설전류는 25/10 nm가 25/5 nm보다 약 20 nA (@5 V) 낮은 것을 확인할 수 있었으며 절연파괴전압(breakdown voltage)도 증가한 것을 확인하였다. 결론적으로 Ta2O5/SiO2 적층 절연막의 두께가 25nm/10nm에서 최적의 특성을 얻을 수 있었으며, 본 실험과 같이 게이트 절연막 엔지니어링을 통하여 효과적으로 누설전류를 줄이고 게이트 용량을 증가시킴으로써 고집적화된 소자의 제작에 유용한 기술로 기대된다.

  • PDF

Design of an Offset Interdigital Filter Based on Multi-Port EM Simulated Y-Parameters (EM 시뮬레이션 기반 다중 포트 Y-파라미터를 이용한 변위된 인터디지털 여파기 설계)

  • Lee, Seok-Jeong;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.694-704
    • /
    • 2011
  • In this paper, we present a design of a 5th order Chebyshev interdigital band-pass filter using inverter and susceptance slope parameter values obtained from EM simulated multi-port Y-parameters. The shifted length of the resonator is determined when the frequency of the transmission zero is separated far away from the center frequency. For the initial dimensions of the interdigital filter, the filter is decomposed into the individual resonators, and the dimensions are obtained using EM Simulation of the decomposed resonators. However, the interdigital filter with the dimensions determined from the EM simulation of the decomposed resonators shows slightly distorted response from the desired frequency response due to the coupling between non-adjacent resonators. To obtain a EM simulation dataset, EM simulation for this filter is carried out by parameter sweep with constant ratio for the initial values. In this dataset, it is determined the final values for the filter by optimization. The fabricated filter by PCB shows an upper-shift of center frequency of about 70 MHz, which was caused by permittivity changed and tolerance of fabrication.

Optimal Design of Permanent Magnet Thrust Bearings (영구자석형 스러스트 베어링의 최적 설계)

  • Yoo, Seong-Yeol;Kim, Woo-Yeon;Kim, Seung-Jong;Lee, Wook-Ryun;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2011
  • In this paper, we describe a process for optimally designing a ring-type permanent magnet thrust bearing. The bearing consists of two sets of permanent magnet rings. One set is located inside the other set. An axial offset between the two sets creates axial force, which results in a thrust bearing function. In order to realize an optimal design of the bearing where the required load capacity of the bearing is achieved with the least magnet volume, we derived analytical design equations by adopting the equivalent current sheet (ECS) method. We considered the following two types of magnet arrays: axial arrays and Halbach arrays. These two types of arrays are optimized using the analytical design equations. The results of the optimization are verified using three dimensional (3D) finite element analyses (FEA). The results show that the Halbach array can achieve the required load capacity with less amount of permanent magnet than the axial array does. The efficacy of the ECS method is also verified by using 3D FEA. It is found that the accuracy of ECS method is more sensitive to the underlying assumptions for the Halbach array than for the axial array.

The study of optimization of restraint systems for injuries of Q6 and Q10 child dummies (Q6, Q10 어린이 인체모형 상해치에 대한 안전 구속 시스템 최적화 연구)

  • Sun, Hongyul;Lee, Seul;Kim, Kiseok;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.7-13
    • /
    • 2015
  • Occupant protection performance in frontal crashes has been developed and assessed for mainly front seat occupants over many years, and in recent years protection of rear seat occupants has also been extensively discussed. Unlike the front seats, the rear seats are often occupied by children seated in rear-facing or forward - facing child restraint systems, or booster seats. In the ENCAP, child occupant protection assessments using 18-month-old(P1.5) and 3-year-old(P3) test dummies in the rear seat have already been changed to new type of 18-month-old (Q1.5)and 3-year-old(Q3) test dummies. In addition, ENCAP are scheduled with the development and introduction of test dummies of 6-year-old (Q6) and 10.5-year-old children(Q10) starting 2016. In KNCAP, Q6 and Q10 child dummies will be introduced in 2017 as well. Automobile manufacturers need to develop safety performance for new child dummies closely. In this paper, we focused on Q6 and Q10 child dummies sitting in child restraint system. Offset frontal crash tests were conducted using two types of test dummies, Q6 and Q10 child dummies, positioned in the rear seat. Q6 and Q10 were used to compare dummy kinematics in rear seating positions between Q6 behind the driver's seat and Q10 behind the front passenger's seat. The full vehicle sled test results of both dummies were conducted with different restraint systems. It showed that several injury and image data was collected as the result of the full vehicle sled test. Based on the results of these investigations, this paper describes which factor is most important and combination is the best performance when evaluating rear seat occupant protection for Q6 and Q10 child dummies.

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data (스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Jang, Dong-Hyuk;Park, Yun-Hui
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

Optimal Forest Management for Improving Economic and Public Functions in Mt.Gari Leading Forest Management Zone (가리산 선도산림경영단지의 경제적·공익적 기능 증진을 위한 산림관리 최적화 방안)

  • Kim, Dayoung;Han, Hee;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.665-677
    • /
    • 2021
  • This study analyzed the optimization method of forest management to enhance economic and public functions, as well as the interrelationship among timber production, carbon storage, and water conservation functions in Mt.Gari leading forest management zone. For these purposes, a forest management planning model was developed using Multi-Objective Linear Programming. The model had an objective function to maximize the total NPV (Net Present Value) of weighted timber production, carbon storage, water conservation, and constraints to limit the rate of change in timber production, percentage of each age-class and tree species area, percentage of conifers and broad-leaved trees area in each management zone, minimum timber production and timber sales amount. Based on the description of forest inventory and the comprehensive plan of Mt.Gari, we analyzed stand information and management constraints of the study area. We compared management alternatives using different weights in the objective function. Therefore, the total NPV was maximized in the alternative considering the three functions in equal proportion, rather than the alternatives of maximizing only one function. When all three functions were considered simultaneously, timber production offset the carbon storage and water conservation, and carbon storage and water conservation interacted synergistically. However, when considering only two of the three functions, all combinations of functions demonstrated tradeoffs with one other. Therefore, we discovered that by considering all three functions equally, rather than only one or two functions, the economic and public values of the study area can be maximized.

Single-Channel Seismic Data Processing via Singular Spectrum Analysis (특이 스펙트럼 분석 기반 단일 채널 탄성파 자료처리 연구)

  • Woodon Jeong;Chanhee Lee;Seung-Goo Kang
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.91-107
    • /
    • 2024
  • Single-channel seismic exploration has proven effective in delineating subsurface geological structures using small-scale survey systems. The seismic data acquired through zero- or near-offset methods directly capture subsurface features along the vertical axis, facilitating the construction of corresponding seismic sections. However, substantial noise in single-channel seismic data hampers precise interpretation because of the low signal-to-noise ratio. This study introduces a novel approach that integrate noise reduction and signal enhancement via matrix rank optimization to address this issue. Unlike conventional rank-reduction methods, which retain selected singular values to mitigate random noise, our method optimizes the entire singular value spectrum, thus effectively tackling both random and erratic noises commonly found in environments with low signal-to-noise ratio. Additionally, to enhance the horizontal continuity of seismic events and mitigate signal loss during noise reduction, we introduced an adaptive weighting factor computed from the eigenimage of the seismic section. To access the robustness of the proposed method, we conducted numerical experiments using single-channel Sparker seismic data from the Chukchi Plateau in the Arctic Ocean. The results demonstrated that the seismic sections had significantly improved signal-to-noise ratios and minimal signal loss. These advancements hold promise for enhancing single-channel and high-resolution seismic surveys and aiding in the identification of marine development and submarine geological hazards in domestic coastal areas.