• Title/Summary/Keyword: Offset measurement system

Search Result 93, Processing Time 0.024 seconds

Estimation of Sensitivity Axis Offset of an Accelerometer for Accurate Measurement of the 6 DOF Human Head Motion (인체 머리부 6 자유도 운동 측정의 신뢰성 향상을 위한 가속도계 감도축의 옵셋(offset) 추정)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon;Jang, Han-Kee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.905-912
    • /
    • 2008
  • Notion sickness is well known to be caused by long time exposure to the very low frequency motion in the multiple axes of human body Since the vestibular system for the perception of low frequency motion is located in the head, accurate measurement of 6 degree of freedom head motion is of great importance. In this study, the measurement system consisting of a safety helmet and 9 translational accelerometers was constructed for the estimation of 3 translational and 3 rotational motions of human head. Since estimation errors of 3 rotational components can be significantly magnified even by small offset of the sensitivity axis from the geometric center of an accelerometer, accurate measurement of sensitivity axis must be preceded. The method for accurate estimation of the offset was proposed, and the effect of offset on the estimation of angular acceleration was investigated.

A Study on the Design of Digital Controllers with Automatic Calibration (자동 보정형 디지털 제어기 설계에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.413-416
    • /
    • 1998
  • Sensitivity and calibration considerations are most important in the design and implementation of real control systems. Ideally parameter changes due to various causes should not appreciably affect the system's performances. But all the values of physical components of the plants and controllers as well as the relevant environmental conditions change in time, thus the output performance can be deteriorated during the operating span of the system. Naturally the duty of calibration or the prevention of performance deterioration due to excessive component sensitivity should be provided to the control system. In this paper, we propose a digital controller which has the capability of calibration and gain adjustment as well as the execution of control law. Specifically the problems of gain adjustment and offset calibration in the light source and CdS sensor module for position measurement in a flexible link system are considerably resolved. The parameters of measurement module are prone to change due to environmental brightness conditions resulting in poor steady state performance of the overall control system. Thus a proper method is necessary to provide correction to the changed values of gain and offset in the position measurement module. The proposed controller, whenever necessary, measures the open-loop characteristics, andthen calculates the offset and sensor gain correction values based on the prepared standard measurements. It is applied to the control of a flexible link system with the gain and offset calibration porblems in the light sensor module for position to show the applicability.

  • PDF

Generating Cartesian Tool Paths for Machining Sculptured Surfaces from 3D Measurement Data (3차원 측정자료부터 자유곡면의 가공을 위한 공구경로생성)

  • Ko, Byung-Chul;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.123-137
    • /
    • 1993
  • In this paper, an integrated approach is proposed to generate gouging-free Cartesian tool paths for machining sculptured surfaces from 3D measurement data. The integrated CAD/CAM system consists of two modules : offset surface module an Carteian tool path module. The offset surface module generates an offset surface of an object from its 3D measurement data, using an offsetting method and a surface fitting method. The offsetting is based on the idea that the envelope of an inversed tool generates an offset surface without self-intersection as the center of the inversed tool moves along on the surface of an object. The surface-fitting is the process of constructing a compact representation to model the surface of an object based on a fairly large number of data points. The resulting offset surtace is a composite Bezier surface without self-intersection. When an appropriate tool-approach direction is selected, the tool path module generates the Cartesian tool paths while the deviation of the tool paths from the surface stays within the user-specified tolerance. The tool path module is a two-step process. The first step adaptively subdivides the offset surface into subpatches until the thickness of each subpatch is small enough to satisfy the user-defined tolerance. The second step generates the Cartesian tool paths by calculating the intersection of the slicing planes and the adaptively subdivided subpatches. This tool path generation approach generates the gouging-free Cartesian CL tool paths, and optimizes the cutter movements by minimizing the number of interpolated points.

  • PDF

A Study on the Measurement Method of Test Waveform for System-level HEMP Immunity Test (체계 수준 HEMP 내성 시험을 위한 시험파형 계측 기법 연구)

  • Yeo, Saedong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.233-240
    • /
    • 2019
  • High-altitude ElectroMagnetic Pulse(HEMP) is a high-power electromagnetic pulse caused by nuclear explosions at altitudes above 30 km. This pulse can cause serious damage to the electrical/electronic device. Therefore, there are a lot of studies on the effects of HEMP in the literature. When conducting studies on the effects of HEMP, it is essential to measure the simulated HEMP. Depending on the need for measurement, this paper focuses on the HEMP measurement method. This paper proposes a measurement method using frequency domain compensation to extract the correct waveform and solves the offset problem more efficiently than the conventional methods. The proposed method is verified by experiment using HEMP simulator and measurement system in ADD.

A Study on System for Synchronization of Multiple UAVs and Ground Control System (무인이동체 및 지상국 컴퓨터 간의 시간 정보 동기화를 위한 시스템 연구)

  • Lee, Won-Seok;Lee, Woon-Sang;Song, Hyoung-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • In this paper, system that includes multiple unmanned aerial vehicles (UAVs) are considered. The vehicles are equipped with a mission computer for a specific mission and equipment. The mission equipment operates based on the time of mission computer. Also, data collected by flight computer and mission computer is saved with the time of each operating system. Generally, time offset between multiple computers always exists, though the computers are connected to the Internet. When the data collected by multiple computers is combined, the time offset causes damage on reliability of the combined data. Computers that connected to the Internet are synchronized by network time protocol (NTP). This paper proposes a system that the time of multiple mission computers are synchronized by the same NTP server to minimize the time offset. In the results of the measurement, the system time offset of multiple mission computer is maintained within 10ms from the system time of the server computer.

Improved DC Offset Error Compensation Algorithm in Phase Locked Loop System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1707-1713
    • /
    • 2016
  • This paper proposes a dc error compensation algorithm using dq-synchronous coordinate transform digital phase-locked-loop in single-phase grid-connected converters. The dc errors are caused by analog to digital conversion and grid voltage during measurement. If the dc offset error is included in the phase-locked-loop system, it can cause distortion in the grid angle estimation with phase-locked-loop. Accordingly, recent study has dealt with the integral technique using the synchronous reference frame phase-locked-loop method. However, dynamic response is slow because it requires to monitor one period of grid voltage. In this paper, the dc offset error compensation algorithm of the improved response characteristic is proposed by using the synchronous reference frame phase-locked-loop. The simulation and the experimental results are presented to demonstrate the effectiveness of the proposed dc offset error compensation algorithm.

A Joint Frequency Offset Measurement Using Inversely Repeated Training Symbol and Cyclic Prefix (훈련심볼의 위상 반전과 전치순환을 이용한 주파수 오프셋의 계산방법)

  • Kim, Jun-Woo;Park, Youn-Ok;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7A
    • /
    • pp.627-634
    • /
    • 2011
  • In this paper, a new frequency offset estimation method in OFDM system is suggested. To measure fractional part of frequency offset, the repetition feature of cyclic prefix and that of training sequence is adopted. Both method shows relatively large frequency offset estimation error under low SNR circumstances, but this error can be greatly reduced by joint measurement of cyclic prefix and inversely repeated training symbol such as primary advanced preamble (PA-preamble) of IEEE 802.16m IMT-Advanced WiMax system. In this paper, the performance of suggested frequency offset estimation method is verified in IEEE 802.16m IMT Advanced WiMax system, using its PA-preamble and cyclic prefixes of A-preambles.

Analysis for the Squareness Measurement using Laser Interferometer (레이저 간섭계를 이용한 직각도 측정에 관한 분석)

  • Lee, Dong-Mok;Lee, Hoon-Hee;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.863-872
    • /
    • 2012
  • The squareness measurement of driving axes of a machine tool is very important to evaluate the performance of the machine. Laser interferometer measurement system is one of the most reliable equipment to measure the squareness. However, squareness measurement using laser system with an optical square result in restriction of straightness optics setup and Abbe's offset. This offset combines with angular errors during the motion of an axis to cause Abbe's error. In addition, the difficulty in optical square setup causes restriction of other optics and limitation of measurable range. In this paper, mathematical approaches are presented to eliminate the Abbe's error and to estimate squareness for full range by using the best fit of straightness data measured without an optical square. Experiments for squareness measurement of 3 axis machine tool were conducted and the proposed techniques were used for squareness evaluation with elimination of Abbe's error and squareness estimation for the full travel range.

An A/D Conversion of Signal Conditioning for Precision Instrumentation Use (정밀 계측 신호처리용 A/D 변환 구현)

  • Park, Chan-Won;Joo, Yong-Kyu
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.133-139
    • /
    • 2002
  • In precision instrumentation system, an A/D conversion of signal conditioning has been always suffered from some problems ; offset and drift voltage with environmental situation. This paper suggests a method of reducing the offset voltage and the drift error from the A/D conversion hardware using analog signal switching technique with specific operational amplifier circuits. Also, we have designed a hardware active filter and a software digital filter with Auto Zero Tracking algorithm for better dignal process of the our proposed weighing system. Software technique was performed to obtain the stable data from A/D converter. As a result of our experimental works, the proposed system is expected to be used in the industrial field where a high precision measurement is required.

  • PDF

Diminution of Current Measurement Error in Vector Controlled AC Motor Drives

  • Jung Han-Su;Kim Jang-Mok;Kim Cheul-U;Choi Cheol;Jung Tae-Uk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.151-159
    • /
    • 2005
  • The errors generated from current measurement paths are inevitable, and they can be divided into two categories: offset error and scaling error. The current data including these errors cause periodic speed ripples which are one and two times the stator electrical frequency respectively. Since these undesirable ripples bring about harmful influences to motor driving systems, a compensation algorithm must be introduced to the control algorithm of the motor drive. In this paper, a new compensation algorithm is proposed. The signal of the integrator output of the d-axis current regulator is chosen and processed to compensate for the current measurement errors. Usually the d-axis current command is zero or constant to acquire the maximum torque or unity power factor in the ac drive system, and the output of the d-axis current regulator is nearly zero or constant as well. If the stator currents include the offset and scaling errors, the respective motor speed produces a ripple related to one and two times the stator electrical frequency, and the signal of the integrator output of the d-axis current regulator also produces the ripple as the motor speed does. The compensation of the current measurement errors is easily implemented to smooth the signal of the integrator output of the d-axis current regulator by subtracting the DC offset value or rescaling the gain of the hall sensor. Therefore, the proposed algorithm has several features: the robustness in the variation of the mechanical parameters, the application of the steady and transient state, the ease of implementation, and less computation time. The MATLAB simulation and experimental results are shown in order to verify the validity of the proposed current compensating algorithm.