• Title/Summary/Keyword: Offset distance

Search Result 194, Processing Time 0.028 seconds

Development of Accident Analysis Model in Car to Pedestrian Accident (차 대 보행자 충돌시 사고해석 모델개발)

  • Kang, Dae-Min;Ahn, Seung-Mo;An, Jung-O
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.104-109
    • /
    • 2010
  • The fatality of pedestrian accounts for about 21.2% of all fatality at 2007 year in Korea. In car to pedestrian accident it is very important to inspect the throw distance of pedestrian after collision for exact reconstructing of the accident. The variables that influence on the throw distance of pedestrian can be classified into the factors of vehicle and pedestrian, and road condition. It was simulated by PC-CRASH, a kinetic analysis program for a traffic accident in sedan type vehicle and SPSS program was used for regression analysis. From the results, the throw distance of pedestrian increased with the increasing of vehicle velocity, and decreased with the increasing of impact offset. Also it decreased with the increasing of velocity of pedestrian at accident, and throw distance at the road condition of wet was longer than that at dry condition. Finally, the regression model of sedan type vehicle on the throw distance of pedestrian was as follows; $$dist_i=2.39-0.11offset_i+0.59speed_i-545height_i-0.25walk_i+2.78wet_i+{\epsilon}_i$$.

A Simple Vector Calculation Method for the True Failt Displacement Distance (백터계산을 이용한 단층의 이동량 산출법)

  • 황상기
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.365-371
    • /
    • 1999
  • Ture diplacement of a fault monement is calculated from the displacement of the index plane such as bedding on an outcrop surface. The input parameters are the orientations of the index, fault, and outcrop planes. It is also necessary to input the orientation of fault striation and the offset distance of the index plane on the outcrop surface. The distances of the total, strike, horizontal and dip slip components of the fault movement are calculated from the input parameters. Hwang(1998) conducted a simlar calculation using trigonoment method. To apply the previous method, the offset distance of the index plane must be measured on a vertical outcrop surface. The calculation method of this study accepts the offset distence of index plane on an outcrop plane of any orientation. Calculation results from both method are indentical, regardless of the simplicity of the new method.

  • PDF

Integer Frequency Offset Estimation Scheme Robust to Timing Offset for OFDM-Based CR Systems (OFDM 기반 CR 시스템에서 시간 옵셋에 강인한 정수 주파수 옵셋 추정 기법)

  • Lee, Young-Yoon;Song, Chong-Han;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.554-561
    • /
    • 2010
  • This paper proposes an integer frequency offset estimation scheme robust to timing offset for the orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems. The proposed scheme exploits a feature that a sample distance between a continual pilot and a scattered pilot nearest to it in an OFDM symbol belongs to one of predetermined distances. First after calculating a correlation value of every continual pilot and its nearest scattered pilot. Then, it is divided into several groups according to the sample distances. Since correlation values with the same sample distance undergo the same effect of the timing offset, the effect of the timing offset can be removed by re-correlating these correlation values. From the simulation results we can confirm that the proposed algorithm estimates the integer frequency offset with the robustness to the timing offset when compared to a conventional scheme.

A Study on the Factors that Influence the Throw Distance of Pedestrian on the Vehicle-Pedestrian Accident (보행자의 층돌 사고에서 보행자 전도거리에 영향을 주는 인자에 관한 연구)

  • Kang, D.M.;Ahn, S.M.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.56-62
    • /
    • 2009
  • The fatalities of pedestrian account for about 40.0% of all fatalities in Korea 2005. Vehicle-Pedestrian accident generates trajectory of pedestrian. In pedestrian involved accident, the most important data to inspect accident is throw distance of pedestrian. The throw distance of pedestrian can be influenced by many variables. But existing studies have been done for simple factors. The variables that influence trajectory of pedestrian can be classified into vehicular factors, pedestrian factors, and road factors. The trajectory of pedestrian, dynamic characteristics of multi-body were analyzed by PC-CRASH, a kinetic analysis program for a traffic accident. PC-CRASH enables an analyst to investigate the effect of many variables. The influence of the offset of impact point was analyzed by Working Model. Based on the results, the variables that influence trajectory of pedestrian were vehicular frontal shape, vehicular impact speed, the offset of impact point, the height of pedestrian, friction coefficients of pedestrian. However the weight of pedestrian did not affect trajectory of pedestrian considerably.

  • PDF

Shape offsetting using the geometric properties of B-spline curves(2) - A Study on the removal of loops in control polygon offsetting - (B-스플라인 곡선의 기하특성을 이용한 형상 옵셋 (2) -제어다각형 옵셋에서 발생하는 루프의 제거에 대한 연구-)

  • 정재현;김희중;조우승
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.381-386
    • /
    • 1997
  • The offsetting method using geometric properties of B-spline control polygon is more faster than using of general normal vector in offset processing. But this method itself does not solve the prob¬lems of loop removal in normal offsetting. Generally the distance between neighborhood spans of B-spline control polygon is greater than the offset distance, the loops are occurred in offsetting. For generating of the more precision tool-path in NC machining, the loops of offset must be removed. In this paper, two methods for loop removal are introduced in offsetting of B-spline curve. One is using the intersection of B-spline control span which being occurred of the loop. The other is using two B-spline curve divisions divided from original B-spline curve or its offset curve. After the inter¬section point of loop was searched, the loop being removed to cusp. Also the method for filleting of cusp is inspected to more precision cutting. It is shown that the offsetting using B-spline control polygon is more effective in the sculptured surface machining.

  • PDF

Design Equations for the H-plane Power Divider with a Circular Post in a Rectangular Waveguide

  • Han Sang-Sin;Lee Sun-Young;Ko Han-Woong;Park Dong-Hee;Ahn Bierng-Chearl
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.150-155
    • /
    • 2004
  • Universal design equations are presented for the H-plane T-junction power divider with a circular conducting post in a rectangular waveguide. For a given operating frequency and power split ratio, the post offset from the T-junction center line, the distance between the post and the waveguide wall, and the post diameter can be adjusted to obtain a minimum reflection at the input waveguide. Optimum values of the post offset are given in terms of the normalized frequency and the power split ratio. Corresponding values of the post diameter and the distance of the post from the waveguide wall are given in terms of the normalized frequency and the post offset.

Inverse Offset Method for Adaptive Cutter Path Generation from Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • The inverse offset method (IOM) is widely used for generating cutter paths from the point-based surface where the surface is characterised by a set of surface points rather than parametric polynomial surface equations. In the IOM, cutter path planning is carried out by specifying the grid sizes, called the step-forward and step-interval distances respectively in the forward and transverse cutting directions. The step-forward distance causes the chordal deviation and the step-forward distance produces the cusp. The chordal deviation and cusp are also functions of local surface slopes and curvatures. As the slopes and curvatures vary over the surface, different step-forward and step-interval distances are appropriate in different areas for obtaining the machined surface accurately and efficiently. In this paper, the chordal deviation and cusp height are calculated in consideration with the surface slopes and curvatures, and their combined effect is used to estimate the machined surface error. An adaptive grid generation algorithm is proposed, which enables the IOM to generate cutter paths adaptively using different step-forward and step-interval distances in different regions rather than constant step-forward and step-interval distances for entire surface.

Design of AGC and DC Offset Remover for Cable Modem (케이블 모뎀을 위한 AGC 및 DC offset Remover 설계)

  • 김기윤;최형진
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.775-779
    • /
    • 1999
  • This paper presents design of AGC(Automatic Gain Control) and DC offset remover suitable for cable modem which makes use of QAM(Quadrature Amplitude Modulation) scheme. Since QAM has multi-level signal characteristic, for high-order QAM, the constellation is dense and the distance of decision boundary between adjacent symbols is short. So AGC and DC offset remover must be designed optionally for preventing performance degradation. AGC is designed into feedback type and is related to the STR(Symbol Timing Recovery)and Paff interpolation algorithm. Whereas AGC need to perform average power detection during many symbols by comparison with the reference power, DC offset remover uses only the instant polarity decision such that simple implementation can be achieved with good performance. Though the AGC and DC offset remover are simulated here only for 256 QAM scheme for convenience'sake, it can be applied to other multi-level QAM or PSK modulation scheme.

  • PDF

The Analysis of Performance of Precise Single Positioning according to estimation accuracy of Satellite Clock Error (위성 클럭 에러 추정 정확도에 따른 정밀 단독 측위 성능 분석)

  • Zhang, Yu;Shin, Yun-Ho;Shin, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.327-332
    • /
    • 2012
  • In this paper, we analyzed the influence of different observation stations distributions on satellite clock offset estimation based on the PANDA software. The result shows that, when the distance between stations is shorter than 200km, the correlation of troposphere parameter and satellite clock offset parameter is strong, the accuracy of satellite clock offset estimation will be up to 0.8ns; when the distance between stations is up to 500km, as the correction of troposphere parameter and satellite clock offset parameter is significantly reduced, and the two kinds of parameters can be distinguished.

Distance Relaying Algorithm Using a DFT-based Modified Phasor Estimation Method (DFT 기반의 개선된 페이저 연산 기법을 적용한 거리계전 알고리즘)

  • Lee, Dong-Gyu;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1360-1365
    • /
    • 2010
  • In this paper, we propose a distance relaying algorithm using a Discrete Fourier Transform (DFT)-based modified phasor estimation method to eliminate the adverse influence of exponentially decaying DC offsets. Most distance relays are based on estimating phasors of the voltage and current signals. A DFT is generally used to calculate the phasor of the fundamental frequency component in digital protective relays. However, the output of the DFT contains an error due to exponentially decaying DC offsets. For this reason, distance relays have a tendency to over-reach or under-reach in the presence of DC offset components in a fault current. Therefore, the decaying DC components should be taken into consideration when calculating the phasor of the fundamental frequency component of a relaying signal. The error due to DC offsets in a DFT is calculated and eliminated using the outputs of an even-sample-set DFT and an odd-sample-set DFT, so that the phasor of the fundamental component can be accurately estimated. The performance of the proposed algorithm is evaluated for a-phase to ground faults on a 345 kV, 50 km, simple overhead transmission line. The Electromagnetic Transient Program (EMTP) is used to generate fault signals. The evaluation results indicate that adopting the proposed algorithm in distance relays can effectively suppress the adverse influence of DC offsets.