• Title/Summary/Keyword: Offset curve

Search Result 89, Processing Time 0.021 seconds

A Development of Macroscopic Simulation Model for Interrupted Flow using Shockwave (충격파를 이용한 거시적 단속류 시뮬레이션 모형개발)

  • Lee, Ho-Sang;Jung, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.191-201
    • /
    • 2008
  • It has been employed TRANSYT-7F and NETSIM to evaluate the validity and effectiveness of improvement on TSM(Transportation Systems Management). But T7F is hard to describe platoon compression and dispersion in actually, and NETSIM takes a long time for network coding, calibration and have difficulty in setting up saturation flow. While Shockwave Model have advantage which can describe platoon compression and dispersion in actually and shorten hours, convenience of application. But Shockwave Model apply unrealistic traffic flow relation ship(U-K curve) and simplify platoon because of difficulty in calculating shockwave's position and cross. For solving limitation of existing shockwave models, It develop new model with 2-regime linear model, New platoon model, Extended shockwave, etc. For verifying the validity of the proposed model, it was compared with delay of T7F and NETSIM by offset variation. In conclusion, it is thought that proposed model have outstanding performance to simulate traffic phenomenon.

QoS Improvement Scheme in Optical Burst Switching using Dynamic Burst length Adjustment (광 버스트 스위칭에서 버스트 길이의 동적 조절을 통한 QoS 향상방법)

  • Sanghoon Hong;Lee, Sungchang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.136-144
    • /
    • 2003
  • In this paper, we propose a scheme that can control the loss probability of low priority class bursts by dynamically adjusting the assembly threshold of low priority class. The key ideas is that the loss Probability of the longer burst increases as the load increases, thus reduced low priority class burst length decreases the loss priority at high traffic load. To achieve this aim, we first derive the relation among the loss probability, the assembly threshold, and the traffic load. In this paper we derive the relation by curve fitting on the simulation results. The ingress edge routers periodically or by event-driven receives the proper corresponding assembly threshold information from the core routers. This assembly threshold is calculated from the derived relation so that the required loss probability of the low priority class bursts in the network is satisfied. The simulation results show that the proposed scheme performs well to meet the loss probability target as expected.

Dynamic Temperature Compensation System Development for the Accelerometer with Modified Spline Interpolation (Curve Fitting) (변형 스플라인 보간법(곡선맞춤)을 통한 가속도 센서의 동적 온도 보상 시스템 개발)

  • Lee, Hoochang;Go, Jaedoo;Yoo, Kwangho;Kim, Wanil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.114-122
    • /
    • 2014
  • Sensor fusion is the one of the main research topics. It offers the highly reliable estimation of vehicle movement by processing and mixing several sensor outputs. But unfortunately, every sensor has drift which degrades the performance of sensor. It means a single degraded sensor output may affect whole sensor fusion system. Drift in most research is ideally assumed to be zero because it's usually a nonlinear model and has sample variation. Plus, it's very difficult for the acceleration to separate drift from the output signal since it contains many contributors such as vehicle acceleration, slope angle, pitch angle, surface condition and so on. In this paper, modified spline interpolation is introduced as a dynamic temperature compensation method covering sample variation. Using the last known output and the first initial output is suggested to build and update compensation factor. When the system has more compensation data, the system will have better performance of compensated output because of the regression compensation model. The performance of the dynamic temperature compensation system is evaluated by measuring offset drift between with and without the compensation.

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(5)-Effect of Evaluation Position (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(5) - 평가위치의 영향)

  • Cho, Siehyung;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • This paper is the fifth investigation on the methods of evaluating flow characteristics in a steady flow bench. In previous studies, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation may lead to serious problems. In addition, though the velocity profiles were improved as the measuring position went downstream, the distributions were far from ideal regardless of the valve angle and evaluation position. The eccentricities were also not sufficiently small to disregard the effect on impulse swirl meter (ISM) measurement. Therefore, the effect of these distribution and eccentricity changes according to the positions needs to be analyzed to discuss the method of flow characteristics estimation. In this context, the effects of evaluation position on the steady flow characteristics were studied. For this purpose, the swirl coefficient and swirl ratio were assessed and compared via measurement of the conventional ISM and calculation based on the velocity by particle image velocimetry(PIV) from 1.75B, 1.75 times bore position apart from the cylinder head, to the 6.00B position. The results show that the swirl coefficients by ISM strictly decrease and the curves as a function of the valve lift become smooth and linear as the measuring position goes downstream. However, the values through the calculation based on the PIV are higher at the farther position due to the approach of the tangential velocity profile to ideal. In addition, there exists an offset effect between the velocity distribution and eccentricity in the low valve lift range when the coefficients are estimated based on the swirl center. Finally, the curve of the swirl ratio by ISM and by PIV evaluation as a function the measuring position intersect around 5.00B plane except at $26^{\circ}$ valve angle.

Nonlinear large deflection buckling analysis of compression rod with different moduli

  • Yao, Wenjuan;Ma, Jianwei;Gao, Jinling;Qiu, Yuanzhong
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.855-875
    • /
    • 2015
  • Many novel materials exhibit a property of different elastic moduli in tension and compression. One such material is graphene, a wonder material, which has the highest strength yet measured. Investigations on buckling problems for structures with different moduli are scarce. To address this new problem, firstly, the nondimensional expression of the relation between offset of neutral axis and deflection curve is derived based on the phased integration method, and then using the energy method, load-deflection relation of the rod is determined; Secondly, based on the improved constitutive model for different moduli, large deformation finite element formulations are developed and combined with the arc-length method, finite element iterative program for rods with different moduli is established to obtain buckling critical loads; Thirdly, material mechanical properties tests of graphite, which is the raw material of graphene, are performed to measure the tensile and compressive elastic moduli, moreover, buckling tests are also conducted to investigate the buckling behavior of this kind of graphite rod. By comparing the calculation results of the energy method and finite element method with those of laboratory tests, the analytical model and finite element numerical model are demonstrated to be accurate and reliable. The results show that it may lead to unsafe results if the classic theory was still adopted to determine the buckling loads of those rods composed of a material having different moduli. The proposed models could provide a novel approach for further investigation of non-linear mechanical behavior for other structures with different moduli.

A Study on Vehicle to Road Tracking Methodology with Consideration of vehicle lateral dynamics (차량 횡방향 운동 방정식을 고려한 차대도로간 트래킹 기법)

  • Shin, Dongho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.219-230
    • /
    • 2017
  • This paper proposes a vehicle to road tracking algorithm based on vision sensor by using EKF(Extended Kalman Filter). The lateral offset, heading angle, and curvature which are obtained from vehicle to road tracking might be used as inputs to steering controller of LKAS(Lane Keeping Assist System) or for the warning decision logic of LDWS(Lane Departure Warning System). To the end, in this paper, the yaw rate, steering angle, and vehicle speed as well as lane raw points together with considering of vehicle lateral dynamics are utilized to improve the exactness and convergence of the vehicle to road tracking. The proposed algorithm has been tested at a proving ground that consists of straight and curve sections and compared with GPS datum using DGPS-RTK equipment to show the feasibility of the proposed algorithm.

Gas dynamics and star formation in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.70.2-71
    • /
    • 2021
  • We examine gas kinematics and star formation activities of NGC 6822, a gas-rich dwarf irregular galaxy in the Local Group at a distance of ~490 kpc. We perform profile decomposition of all the line-of-sight (LOS) HI velocity profiles of the high-resolution (42.4" × 12" spatial; 1.6 km/s spectral) HI data cube of the galaxy, taken with the Australian Telescope Compact Array (ATCA). To this end, we use a novel tool based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, the so-called BAYGAUD, which allows us to decompose a velocity profile into an optimal number of Gaussian components in a quantitative manner. We group all the decomposed components into bulk-narrow, bulk-broad, and non-bulk gas components classified with respect to their velocity dispersions and the amounts of velocity offset from the global kinematics, respectively. Using the surface densities and velocity dispersions of the kinematically decomposed HI gas maps together with the rotation curve of NGC 6822, we derive Toomre-Q parameters for individual regions of the galaxy which quantify the level of local gravitational instability of the gaseous disk. We also measure the local star formation rate (SFR) of the corresponding regions in the galaxy by combining GALEX Far-ultraviolet (FUV) and WISE 22㎛ images. We then relate the gas and SFR surface densities in order to investigate the local Kennicutt-Schmidt (K-S) law of gravitationally unstable regions which are selected from the Toomre Q analysis. Of the three groups, the bulk-narrow, bulk-broad and non-bulk gas components, we find that the lower Toomre-Q values the bulk-narrow gas components have, the more consistent with the linear extension of the K-S law derived from molecular hydrogen (H2) observations.

  • PDF

Image Contrast and Sunlight Readability Enhancement for Small-sized Mobile Display (소형 모바일 디스플레이의 영상 컨트라스트 및 야외시인성 개선 기법)

  • Chung, Jin-Young;Hossen, Monir;Choi, Woo-Young;Kim, Ki-Doo
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.116-124
    • /
    • 2009
  • Recently the CPU performance of modem chipsets or multimedia processors of mobile phone is as high as notebook PC. That is why mobile phone has been emerged as a leading ICON on the convergence of consumer electronics. The various applications of mobile phone such as DMB, digital camera, video telephony and internet full browsing are servicing to consumers. To meet all the demands the image quality has been increasingly important. Mobile phone is a portable device which is widely using in both the indoor and outside environments, so it is needed to be overcome to deteriorate image quality depending on environmental light source. Furthermore touch window is popular on the mobile display panel and it makes contrast loss because of low transmittance of ITO film. This paper presents the image enhancement algorithm to be embedded on image enhancement SoC. In contrast enhancement, we propose Clipped histogram stretching method to make it adaptive with the input images, while S-shape curve and gain/offset method for the static application And CIELCh color space is used to sunlight readability enhancement by controlling the lightness and chroma components which is depended on the sensing value of light sensor. Finally the performance of proposed algorithm is evaluated by using histogram, RGB pixel distribution, entropy and dynamic range of resultant images. We expect that the proposed algorithm is suitable for image enhancement of embedded SoC system which is applicable for the small-sized mobile display.

  • PDF

Design of Carrier Recovery Circuit for High-Order QAM - Part I : Design and Analysis of Phase Detector with Large Frequency Acquisition Range (High-Order QAM에 적합한 반송파 동기회로 설계 - I부. 넓은 주파수 포착범위를 가지는 위상검출기 설계 및 분석)

  • Kim, Ki-Yun;Cho, Byung-Hak;Choi, Hyung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.4
    • /
    • pp.11-17
    • /
    • 2001
  • In this paper, we propose a polarity decision carrier recovery algorithm for high order QAM(Quadrature Amplitude Modulation), which has robust and large frequency acquisition performance in the high order QAM modem. The proposed polarity decision PD(Phase Detector) output and its variance characteristic are mathematically derived and the simulation results are compared with conventional DD(Decision-Directed) method. While the conventional DD algorithm has linear range of $3.5^{\circ}{\sim}3.5^{\circ}$, the proposed polarity decision PD algorithm has linear range as large as $-36^{\circ}{\sim}36^{\circ}$ at ${\gamma}-17.9$. The conventional DD algorithm can only acquire offsets less than ${\pm}10\;KHz$ in the case of the 256 QAM while an analog front-end circuit generally can reduce the carrier-frequency offset down to only ${\pm}100\;KHz$. Thus, in this case additional AFC or phase detection circuit for carrier recovery is required. But by adopting the proposed polarity decision algorithm, we can find the system can acquire up to ${\pm}300\;KHz$at SNR = 30dB without aided circuit.

  • PDF