• Title/Summary/Keyword: Off-shore wind

Search Result 44, Processing Time 0.022 seconds

The Characteristics of a Fishing Ground at Yeosu Bay - Pound Net Fishing Ground - (여수해만의 어장학적 특성 - 정치망 어장을 중심으로 -)

  • 김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.44-53
    • /
    • 1989
  • In order to grasp the characteristics of a fishing ground at yeosu bay, the fluctuation in condition of the coast and that in catch by pound nets in the coast were investigated respectively. The results obtained are summarized as follows: 1. The water temperature in spring and summer was higher at the coast side than off shore, but in autumn and winter took the reverse. 2. The salinity was higher in spring and winter than in summer and autumn. A lower salinity zone was found at the Dolsan Do coast and higher ones were made off shore. 3. A eddy current was found at the Dolsan Do coast and a thermocline were made at the depth of 30 to 40 m in summer. But in autumn and winter the water became homogeneous. 4. The annual catch by the pound net was highest in 1984 and then decreased gradually. The monthly catch was highest in June and then decreased gradually. 5. The catches seemed to increase with the sea water temperature and salinity, and great catch was shown in 21$^{\circ}C$ to 27$^{\circ}C$ and 33.80% to 34.00%. 6. The component rate of fishes was 28.4% in spanish mackerel, 17.9% in anchovy, 19.5% in horse mackerel, 21.0% in sardine, 7.2% in hairtail, and 1% in common mackerel. 7. The fishes appeared continuously on way of fishing operation were spanish mackerel, hairtail, Yellow talil, crab, etc. An anchovy and sardine were caught mainly from March to July or August, horese mackerel and common mackerel from May to November. but puffer, swell fish, saury and filefish were caught mainly from April to October. 8. The sum of catch was largest in June, at which the wind direction was NE to SSW, the speed below 3.2m/sec, the atmospheric pressure below 1008mb, and precipitation beyond 154mm.

  • PDF

A Study on Variable Speed Limit Considering Wind Resistance on Off-Shore Bridge (해상교량의 풍하중을 고려한 제한 속도 도출 방안)

  • Lee, Seon-Ha;Kang, Hee-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.75-87
    • /
    • 2004
  • Along the seashore regions in Korea, though strong winds with very large strength are frequently witnessed, no system which can provide appropriate speed information for driving vehicle has been introduced. The driving against strong winds could be very dangerous because of the high possibility of accidents such as rollover and collision. These accidents usually resulted from driver's forced driving try even in difficult situation for steering vehicle, and sometimes overspeed without consideration of wind impact to the vehicles. To reduce accident caused by strong winds, it is important to inform drivers of appropriate driving speeds by perceiving strong winds. By setting up WIS at the main points where strong winds frequently appear and using the variable message sign(VMS) connected to the on-line whether information system, it tis possible to provide desired speed information, which can maintain vehicles' tractive force and maximum running resistance. The case study is conducted on the case of Mokpo-Big-Bridge, which is under construction at Mokpo city. The result show that in case the annual average direction of wind is South and the wind speed is over 8m/hr, the desired speed, which is required in order for vehicles running to South direction to maintain the marginal driving power, is 60km/hr. In addition, for the case of a typhoon such as Memi generated in 2003 year, if wind speed had been 18m/sec in Mokpo city at that time, the running resistance at the speed of 40km/hr is calculated as 1131N. This resistance can not be overcome at the 4th gear(1054N) level, therefore, the gear of vehicles should be reduced down to the 3rd level. In this case, the appropriate speed is 40km/h, and at this point the biggest difference between running resistance and tractive force is generated.

Aerodynamic Load Analysis of a Floating Offshore Wind Turbine Considering Platform Periodic Motion (플랫폼의 주기 운동을 고려한 부유식 해상 풍력터빈의 공력 성능 해석)

  • Kim, Youngjin;Yu, Dong Ok;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.368-375
    • /
    • 2018
  • In the present study, aerodynamic load analysis for a floating off-shore wind turbine was conducted to examine the effect of periodic platform motion in the direction of 6-DOF on rotor aerodynamic performance. Blade-element momentum method(BEM) was used for a numerical simulation, the unsteady airload effects due to the flow separation and the shed wake were considered by adopting a dynamic stall model based on the indicial response method. Rotor induced downwash was estimated using the momentum theory, coupled with empirical corrections for the turbulent wake states. The periodic platform motions including the translational motion in the heave, sway and surge directions and the rotational motion in the roll, pitch and yaw directions were considered, and each platform motion was applied as a sinusoidal function. For the numerical simulation, NREL 5MW reference wind turbine was used as the target wind turbine. The results showed that among the translation modes, the surge motion has the largest influence on changing the rotor airloads, while the effect of pitch motion is predominant for the rotations.

A Fundamental Study on the Types of Ship and the Steerage of Purse Seiners (巾着網漁船의 船型과 操船의 基礎的 硏究)

  • 김진건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.13-24
    • /
    • 1994
  • Purse seiner detects a fish school navigating in full speed with the aid of fish finder, sonar, helicopter, etc., and casts a net quickly to enclose the fish school in purse seine net according to the movement of the fish school, wind, and current. At this moment, if the time of casting a net, direction, speed, and turning circle are net suitable, it is unavoidable to lose fish school founded with hard efforts and we only consume our efforts of casting and hauling the net. Therefore, in order to enclose the fish school to enhance the amount of fish for each casting, the author investigated the type of ships equipped with purse seiners and examined maneuvering tests so that we provide some basic information to figure out the ability of steerage correctly. The results obtained are summarized as follows: 1. Block coefficients of pelagic tuna purse seiners with gross tonnage between 500 and 1500 tons are recorded between 0.50 and 0.55 which are greater than those of off shore purse seiners recorded as between 0.44 and 0.54 and less than those of various cargo ships recorded as between 0.56 and 0.84. 2. L/B, L/D, B/D, B/T, and T/D of the class of gross tonnage between 75 and 130 tons are respectively 4.49, 11.00, 2.45, 2.85 and 0.86 as their average and those of the class of between 500 and 1500 tons are 4.89, 10.53, 2.15, 2.73 and 0.75 respectively, which are quite different from those of various cargo ships recorded as 6.0~7.5, 11.0~12.0, 1.6~2.0, 2.2~2.8 and 0.65~0.75 respectively. 3. Rudder area ratio of purse seiners of the class of between 75 and 130 tons is 1/24~1/31 and that of the clase of between 500 and 1500 tons is 1/36~1/42 which is greater than that of various cargo ships recorded as 1.45~1.75. 4. On speed-length ratio of purse seiners. 111 Dong-a has the biggest value 2.94 the class of 130 tons has 2.52 the class of between 75 and 100 tons has 2.30~2.35 and the class of between 500 and 1500 tons has 1.99~2.05. 5. Turning circle of stern trawlers Pusan 404 and Haelim 3 are measured as below according to rudder angles 5$^{\circ}$, 15$^{\circ}$, 25$^{\circ}$ and 35$^{\circ}$ respectively. Advances are 11.3~13.6, 6.0~7.1, 3.6~4.8 and 2.5~3.5 times of LPP respectively. Tactial diameters are 15.2~18.6, 6.9~8.0, 4.2~4.9 and 2.9~3.5 times of LPP. Purse seiner 111 Dong-a with rudder angle 35$^{\circ}$ has a good yaw with quick responsibility since its advance is 2.2~2.3 times of LPP and since its tactial diameter is 2.0~2.1 times of LPP. 6. In full ahead going of purse seiner 111 Dong-a, it takes about 2 minutes and 10.6 times of LPP from the reverse turning its engine into full astern to the ship speed 0. In its full astern going, it takes about 1 minute and 5.1 times of LPP from the reverse turning its engine into full ahead to the ship speed 0. In its full ahead going, it takes about 2 minutes and 50 seconds and 12.3 times of LPP from stopping its engine to the dead slow ahead speed 3.2 knots.

  • PDF