• 제목/요약/키워드: Off-design Performance Prediction

검색결과 67건 처리시간 0.025초

탈설계점 효과를 고려한 석탄가스화 복합발전용 가스터빈의 성능평가 (Performance Evaluation of the Gas Turbine of Integrated Gasification Combined Cycle Considering Off-design Operation Effect)

  • 이찬;김용철;이진욱;김형택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.209-214
    • /
    • 1998
  • A thermodynamic simulation method is developed for the process design and the performance evaluation of the gas turbine in IGCC power plant. The present study adopts four clean coal gases derived from four different coal gasification and gas clean-up processes as IGCC gas turbine fuel, and considers the integration design condition of the gas turbine with ASU(Air Separation Unit). In addition, the present simulation method includes compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. The present prediction results show that the efficiency and the net power of the IGCC gas turbines are seperior to those of the natural gas fired one but they are decreased with the air extraction from gas turbine to ASU. The operation point of the IGCC gas turbine compressor is shifted to the higher pressure ratio condition far from the design point by reducing the air extraction ratio. The exhaust gas of the IGCC gas turbine has more abundant wast heat for the heat recovery steam generator than that of the natural gas fired gas turbine.

  • PDF

로외에서 운용되는 궤도형차량의 견인성능에 관한 이론적 예측과 실험적 검증 (Theoretical Prediction and Experimental Substantiation of Tractive performance of Off-Road Tracked Vehicles)

  • 박원엽;이규승
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.248-257
    • /
    • 1999
  • A mathematical model was developed to investigate the mechanical interrelation between soil characteristics and main design factors of a tracked vehicles , and predict the tractive performance of the tracked vehicles. Based on the mathematical model, a computer simulation program(TPPMTV98) was developed in this study. The effectiveness of the developed model was verified by comparing the predicted drawbar pulls using TPPMTV98 with measured ones from traction tests with a tracked vehicle reconstructed for test in loam soil with moisture content of 18.92%(d.b). The drawbar pulls measured by the TPPMTV98 were well matched to the measured ones. Such results implied that the model developed in this study could estimate the drawbar pulls well at various soil conditions , and would be very useful as a simulation tool for designing a tracked vehicle and predicting its tractive performance.

  • PDF

Flow simulation and efficiency hill chart prediction for a Propeller turbine

  • Vu, Thi;Koller, Marcel;Gauthier, Maxime;Deschenes, Claire
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권2호
    • /
    • pp.243-254
    • /
    • 2011
  • In the present paper, we focus on the flow computation of a low head Propeller turbine at a wide range of design and off-design operating conditions. First, we will present the results on the efficiency hill chart prediction of the Propeller turbine and discuss the consequences of using non-homologous blade geometries for the CFD simulation. The flow characteristics of the entire turbine will be also investigated and compared with experimental data at different measurement planes. Two operating conditions are selected, the first one at the best efficiency point and the second one at part load condition. At the same time, for the same selected operating points, the numerical results for the entire turbine simulation will be compared with flow simulation with our standard stage calculation approach which includes only guide vane, runner and draft tube geometries.

초소형 엔진의 윈드밀링 시동 성능 해석 (A Study on Windmilling Start Performance of Micro Turbo-jet Engine)

  • 김완조;박휘섭;노태성;최동환
    • 한국추진공학회지
    • /
    • 제12권2호
    • /
    • pp.15-23
    • /
    • 2008
  • 본 연구에서는 초소형 엔진의 윈드밀 시동 성능을 예측하기 위해 엔진의 주요 구성 부품의 전압력 손실 예측에 기반한 수치 방법을 개발하였다. 이 수치 기법을 원심형 압축기를 가진 엔진에 적용한 후 해석 결과를 시동 성능 시험 데이터와 비교하여 수치 기법의 신뢰도를 확인하였고 탈설계점 및 설계점 영역에서의 시동 성능 및 시동 가능 영역을 예측하였다. 윈드밀 시동 가능 영역 확장을 위해 각 설계 변수들의 윈드밀 시동 성능에 미치는 영향을 해석하였다.

초소형 엔진의 윈드밀링 시동 성능 해석 (A study on Windmilling Start Performance of Micro Turbo-jet Engine)

  • 김완조;박휘섭;노태성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.319-322
    • /
    • 2007
  • 본 연구에서는 초소형 엔진의 윈드밀 시동시의 성능을 예측하기 위해 엔진의 주요 구성 부품의 성능의 손실해석을 통한 수치 방법을 개발하였다. 사류형 압축기를 가진 초소형 터보제트 엔진에 이 수치기법을 적용하여 탈설계점 및 설계점 영역에서 시동 특성을 해석하였다. 또한 각 설계 변수들의 윈드밀 시동 성능에 영향을 주는 민감도를 분석하였다.

  • PDF

모형기차의 구동부 설계를 위한 동역학적 성능해석 (Analysis of Dynamic Performance of Model Tranis for Their Drive Train Design)

  • 김석태;윤순형;탁태오
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.99-106
    • /
    • 2001
  • Model trains should have very similar motion characteristics to real trains in order to provide realistic feeling to their operators. Main purpose of dynamic analysis of model trains is to predict velocities in straight and circular tracks and estimate stopping distance after power shut off. Equations of motion for a model train are derived that relates velocity, traction, rolling resistance, and pulling force. Also, energy equations for calculating stopping distance after power shut off are derived. Experiments with model trains are preformed to measure velocity, rolling resistance, slip, and stopping distance. The results are compared with the prediction based on the equations of motion, and they showed good agreement. It can be concluded that the prediction is more accurate when the slip between wheel and rail is accounted for. The analysis procedures can be applied to determining various design factors in model trains.

  • PDF

추진제의 비균일 혼합분포를 고려한 액체로켓 추력실의 성능 예측기법 개발 (Performance Prediction of Liquid Rocket Thrust Chambers with Nonuniform Propellant Mixing)

  • 김성구;최환석;한영민;이광진
    • 한국항공우주학회지
    • /
    • 제34권9호
    • /
    • pp.82-88
    • /
    • 2006
  • 벽면 냉각을 위해 장착되는 최외곽 연료 분사 또는 막냉각 장치는 액체로켓 추력실 내에서 반경방향으로 비균일한 추진제의 혼합분포를 야기하게 된다. 본 연구에서는 설계단계에서 이러한 특성들이 벽면 근방의 온도분포 및 추진 성능에 미치는 영향을 예측할 수 있는 해석방법을 개발하였다. 설계코드로서의 효용성을 높이기 위해 분사/미립화 영역에서 나타나는 복잡한 물리현상을 미시적으로 해석하는 대신에 분사기 종류와 배열에 따른 거시적 혼합특성을 모사할 수 있는 모델을 사용하였으며, 연소시험데이터를 이용한 성능 파라미터의 보정방법을 제안하였다. 위와 같은 방법을 통해 현재 개발 중인 30톤급 실물형 연소기에 대한 설계점 및 탈설계 작동영역에서의 성능 파라미터를 정확히 예측할 수 있었으며, 향후 재생냉각 연소기 설계에 유용한 해석적 방법론을 제공할 것으로 기대된다.

반경류 터보기계 회전차 내의 비점성 유동해석 및 성능예측 (Calculation of Inviscid Flows and Performance Prediction of Radial Turbomachine)

  • 강신형;김영호;최명렬
    • 설비공학논문집
    • /
    • 제2권3호
    • /
    • pp.199-207
    • /
    • 1990
  • Inviscid flows in a radial turbomachine and its performance are predicted by using a pannel method. Possibility of the method to be used for design purpose is investigated. The flows in a radial turbomachine are reasonably simulated with several off-design flow rates. The diameter ratio of the rotor and inlet and outlet vane angles are systematically changed so that performance of the machine in various designs are predicted. All the predictions are shown to be in the range of Cordier curve. On the other hand, calculated slip factors are also in good agreement with values given by an empirical formula.

  • PDF

다단축류압축기의 공력성능 예측기법 개발 및 적용연구 (Aerodynamic Performance Prediction of Multistage Axial-Flow Compressors with Its Applications)

  • 정희택;박창희
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.54-59
    • /
    • 1999
  • The purpose of the present study was to develop the numerical method for predicting the on-design and off-design performance of multistage axial-flow compressors. The aerodynamic properties in blade rows were analyzed by incorporating the streamline curvature method as a quasi 3D analysis with the imperical modeling of exit flow angle and loss coefficients. The present calculation procedure has been tested by applying to 5-stage compressors and good agreement with experiments has been found. The detail analysis of aerodynamic performances has been done on the compression part of the bench-scaled gas turbine engines. The predicted performance map at the variable speedline and flow rates could be used as a guide of the engine operation.

  • PDF

축류형 송풍기의 익단간극이 성능에 미치는 영향에 관한 연구 (A Study of the Tip Clearance Effect to the Performance of an Axial-Type Fan)

  • 조종현;정양범;김영철;조수용
    • 한국유체기계학회 논문집
    • /
    • 제11권6호
    • /
    • pp.7-17
    • /
    • 2008
  • Fan performances are obtained with various tip clearance gaps and stagger angles of the rotor. A tested fan is an axial-type fan of which the casing diameter is 806 mm. Two different rotors are applied to this test. One is designed on the basis of the free vortex method along the radial direction and the other is designed using the forced vortex method. The operating conditions are varied to the ultimate off-design point as well as the deign point. Overall efficiency, total pressure and input power are compared with the tip clearance gaps and different stagger angle. The experimental results show that changing of the stagger angle has minor influence to the performance when the same rotor is applied. When the tip clearance gap is less than 5% of the rotor span, the overall efficiency, total pressure loss and input power reduction are varied linearly with the variation of the tip clearance gaps. On the design point, the overall efficiency is decreased to the rate of 2.8-2.9 to the increasing of the tip clearance, but the changing rate of the overall efficiency is alleviated when the fan operates at off-design points. In particular, this rate is more quickly declined on a fan with the rotor designed using the forced vortex method. The result of the total pressure shows that the pressure reduction rate is a 0.08-0.1 according to the tip clearance, and additionally the input power reduction rate is a 0.045-0.065 at design point.