• Title/Summary/Keyword: Off-cycle driving conditions

Search Result 4, Processing Time 0.018 seconds

Evaluations for Representativeness of Light-Duty Diesel Vehicles' Fuel-based Emission Factors on Vehicle Operating Conditions (연료 소비량에 기반한 소형 경유차 대기오염물질 배출계수의 운전조건별 대표성 평가)

  • Lee, Taewoo;Kwon, Sangil;Son, Jihwan;Kim, Jiyoung;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.745-756
    • /
    • 2013
  • The purpose of this study is to evaluate representativeness of fuel-based emission factors. Twelve light-duty diesel vehicles which meet Euro-3 to 5 legislative emission limits were selected for emission tests. Second-by-second modal emission rates of vehicles were measured on a standard laboratory chassis dynamometer system. An off-cycle driving cycle was developed as a representative Korean real-world on-road driving cycle. Fuel-based emission factors were developed for short trip segments that involved in the selected driving cycle. Each segment was defined to have unit travel distance, which is 1 km, and characterized by its average speed and Relative Positive Acceleration (RPA). Fuel-based $NO_x$ emission factors demonstrate relatively good representativeness in terms of vehicle operation conditions. $NO_x$ emission factors are estimated to be within ${\pm}20%$ of area-wide emission factor under more than 40% of total driving situations. This result implies that the fuel-based $NO_x$ emission factor could be practically implemented into the on-road emission management strategies, such as a remote sensing device (RSD). High emitting vehicles as well as high emitting operating conditions heavily affect on the mean values and distributions of CO and THC emission factors. Few high emitting conditions are pulling up the mean value and biasing the distributions, which weaken representativeness of fuel-based CO and THC emission factors.

A Study on the Emission Characteristics of Korean Light-duty Vehicles in Real-road Driving Conditions (국내 소형자동차의 실제 도로 주행 배출가스 특성에 관한 연구)

  • Park, Junhong;Lee, Jongtae;Kim, Sunmoon;Kim, Jeongsoo;Ahn, Keunwhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.123-134
    • /
    • 2013
  • Strengthening vehicle emission regulation is one of important policies to improve air quality in urban area. Due to the limitation of specified driving cycles for certification test to reflect real driving conditions, additional off-cycle emission regulations have been adopted in US and being developed in Europe. The driving cycles of US or Europe have been used in emission certification for Korean light-duty vehicles, but it has not been known how well the driving cycles reflect various real driving patterns in Korea. In that point of view, it is required to estimate vehicle emission based on real road driving conditions to raise the effectiveness of vehicle emission regulation in Korea. In this study, real driving emission measurements have been conducted for three Korean light-duty vehicles with PEMS. The driving routes consisted of urban, rural and motorway in Seoul and Incheon. The data have been analyzed with various averaging methods including moving averaging windows method and compared to emission limits set with emission certification modes applied to tested vehicles. The results have shown that the real driving pollutant emissions of a gasoline and a LPG vehicles have been ranged quite lower than those of emission limits on CVS-75 driving cycle. But real driving NOx of a light duty diesel vehicle has been considerably higher than emission limit of NEDC driving cycle. The higher than expected NOx emission of a diesel vehicle might be caused by different strategy to control EGR in real driving condition from NEDC driving.

NOx Emission Characteristics of Diesel Passenger Cars Met Euro 6a, 6b and 6d Regulations on Off-cycles (Off-cycle에서 Euro 6a, 6b 및 6d 규제 만족 디젤 자동차의 NOx 배출 특성)

  • Kim, Jeonghwan;Kim, Sungwoo;Kim, Kiho
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.136-148
    • /
    • 2018
  • Major countries have tighten their NOx regulation of diesel passenger cars. In the case of the EU, the regulation has been toughen up to 6.25 times since 2000. Despite the regulation the NOx concentration of the ambient has not been reduced proportionally. As these issues, to reduce NOx emission practically, Korea and the EU introduced the real-world driving emission (RDE) regulation and the test method that will be applied after 2017. In this paper, for the regulation to make a soft landing in Korea, 6 diesel passenger cars which met Euro 6a~6d regulation and were equipped with LNT/SCR were tested at a chassis dynamometer with environmental chamber applying the off-cycles (FTP, US06, SC03, HWFET and CADC) and several ambient conditions (-7 and $14^{\circ}C$) as well as certification modes (NEDC, WLTC@ $23^{\circ}C$). The result of the test showed that the ambient temp. and the engine load as a test mode impacted the NOx emission of the cars while the vehicles with SCR emitted NOx lower than with LNT. Additionally, to propose an effective RDE test method, the above result was compared with the results of the other papers which tested RDE using the same cars.

Development of the Active Ankle Foot Orthosis to Induce the Normal Gait for the Paralysis Patients (마비 환자의 정상적 보행을 위한 능동형 단하지 보조기 개발)

  • Hwang, Sung-Jae;Kim, Jung-Yoon;Hwang, Seon-Hong;Park, Sun-Woo;Yi, Jin-Bock;Kim, Young-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2007
  • In this study, we developed an active ankle-foot orthosis(AAFO) which can control dorsi/ plantar flexion of the ankle joint to prevent foot drop and toe drag during walking. 3D gait analyses were performed on five healthy subjects under three different gait conditions: the normal gait without AFO, the SAFO gait with the conventional plastic AFO, and the AAFO gait with the developed AFO. As a result, the developed AAFO preeminently induced the normal gait compared to the SAFO. Additionally, AAFO prevented foot drop by proper plantarflexion during loading response and provided enough plantarflexion moment as a driving force to walk forward by sufficient push-off during pre-swing. AAFO also could prevent toe drag by proper dorsiflexion during swing phase. These results indicate that the developed AAFO may have more clinical benefits to treat foot drop and toe drag, compared to conventional AFOs, and also may be useful in patients with other orthotic devices.