• Title/Summary/Keyword: Off-axis collimator

Search Result 18, Processing Time 0.016 seconds

Dosimetric Characteristics of Dual Photon Energy Using Independent Collimator Jaws (고에너지 선형가속기의 Independent Collimator를 이용한 비대칭 방사선 조사시 방사선량 결정에 미치는 요인에 관한 연구)

  • Kim Jeung-kee;Choi Young-Min;Lee Hyung-Sik;Hur Won-Joo
    • Radiation Oncology Journal
    • /
    • v.14 no.3
    • /
    • pp.237-244
    • /
    • 1996
  • Purpose : The accurate dosimetry of independent collimator equipped for 6MV and 15MV X-ray beam was investigated to search for the optimal correction factor. Materials and Methods : The field size factors, beam quality and dose distribution were measured by using 6MV, 15MV X-ray Field size factors were measured from $3{\times}3cm^2$ to $35{\times}35cm^2$ by using 0.6cc ion chamber (NE 2571) at Dmax. Beam qualities were measured at different field sizes, off-axis distances and depths. Isodose distributions at different off-axis distance using $10\times10cm^2$ field were also investigated and compared with symmetric field. Result: 1) Relative field size factors was different along lateral distance with maximum changes in $3.1\%$ for 6MV and $5\%$ for 15MV. But the field size factors of asymmetric fields were identical to the modified central-axis values in symmetric field, which corrected by off-axis ratio at Dmax. 2) The HVL and PDD was decreased by increasing off-axis distance. PDD was also decreased by increasing depth For field size more than $5{\times}cm^2$ and depth less than 15cm, PDD of asymmetric field differs from that of symmetric one ($0.5\~2\%$ for 6MV and $0.4\~1.4\%$ for 15MV). 3) The measured isodose curves demonstrate divergence effects and reduced doses adjacent to the edge close to the flattening filter center was also observed. Conclusion . When asymmetric collimator is used, calculation of MU must be corrected with off-axis and PDD with a caution of underdose in central axis.

  • PDF

Dosimetric Measurement for 4MV X-Ray Linear Accelerator with Asymmetric Collimator System (4MV 선형가속기에서의 비대칭 콜리메이터의 선량측정)

  • 이병용;최은경;장혜숙
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 1990
  • Dosimetric measurement of an asymmetric collimator system was performed, using water phantom system for 4MV X-ray linear accelerator. We have studied the system of dose calculation with those measured result. We compared the field size factor and the percent depth dose for asymmetric collimator to those factor for symmetric fields. The results show that we can use symmetric field data directly within 1% error, if we consider the off axis ratio(OAR).

  • PDF

Development of diameter 450 mm Cassegrain tlne collimator (직경 450 mm Cassegrain 형태 시준장치의 제작)

  • 양호순;이재협;이윤우;이인원;김종운;김도형
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.241-247
    • /
    • 2004
  • The collimator is necessary for the assembly and evaluation of high resolution satellite telescope. Traditionally, the off-axis paraboloid has been used as a collimator. However, it has some disadvantages in that it can suffer from air turbulence when the focal length of a collimator is long, which may result in some error in the measurement. In contrast, since the Cassegrain type collimator folds the beam, it occupies smaller space compared to the off-axis paraboloid for the same focal length. This can reduce the air turbulence, which can improve the measurement accuracy. In this paper, we explain the process of design and manufacturing of a diameter 450 mm Cassegrain type collimator, to evaluate the diameter 300 mm satellite telescope. After assembly of primary and secondary mirrors, the final wavefront error of the collimator was 0.07λ(λ=633 nm), which is the diffraction limit.

Fabrication of the focal length and distortion measurement system (초점길이 및 왜곡수차 측정장치 제작)

  • 조현모
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.82-86
    • /
    • 1990
  • A camera type optical bench system equipped with a lens collimator and an image analyzer is fabricated to measure the equivalent focal length and distortion of lenses. This system is automatized by the computer which controls stepping motors. A nodal slide optical bench system equipped with an off axis reflective collimator is fabricated and improved by using rotating arms and air bearing system. distortion measurement on a wide angle lens using the camera method and the nodal slide method is reported. Defocusing error in the distortion measurement with the nodal slide optical bench is analyzed and improved by iteration method to search the correct image point.

  • PDF

A Study on the Reduction of Scattered Ray in Outside Radiation Field (조사야 외부의 산란선량 감소 방법에 관한 연구)

  • Je, Jaeyong;Jang, Howon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.539-543
    • /
    • 2016
  • In this research, The way to decrease a patient's exposure dose by reducing the scattered radiation dosage outside a radiation field with an diagnosis X-ray was examined. The scattered radiation dosage reaching other parts outside the radiation field was to be reduced by attaching a self-produced $150{\times}190mm^2$ lead plate to the lower part of a collimator. When a lead plate was inserted additionally and the scattered radiation dosage of the X axis was measured in the direction of the central X-ray axis, It was found out to have been decreased by 26 to 36%, and in the direction of Y axis, which was vertical direction from the central axis, The scattered radiation dosage depending on whether a lead plate was used or not displayed no large differences. These results shows that the impact of the scattered radiation by the off focus X-ray that was generated around the focus was bigger than that generated by the shutter of the collimator. Therefore it has been concluded that installing an additional lead plate in the lower part of the existing collimator can decrease the scattered radiation dosage outside a radiation field.

Fabrication and Evaluation of Diameter 1 m Off-axis Parabolic mirror (직경 1 m 비축포물면의 가공 및 평가)

  • Yang, Ho-Soon;Lee, Jae-Hyeob;Jeon, Byung-Hyug;Lee, Yun-Woo;Lee, Kyoung-Muk;Choi, Se-Chol;Kim, Jong-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.287-293
    • /
    • 2008
  • The collimator which makes a collimated beam, is an essential instrument for assembly and evaluation of telescopes. Recently, the Cassegrain type collimator has been widely used for its compact size as the focal length of high resolution cameras becomes longer. However, this kind of collimator has a disadvantage in that the secondary mirror is a heat source which can degrade the evaluation accuracy for an IR camera system. In this paper, we present the fabrication and measurement process for an off-axis parabolic mirror with the physical diameter pf 1 m, effective diameter 930 mm, and the focal length 6 m. After four months of works we obtained the final surface wave-front error of 30.4 nm rms ($\lambda$/138, ${\lambda}=4.2\;{\mu}m$), which is capable of evaluation of an IR camera as well as a visible camera.

Use of Flattening Filter Free Photon Beams for Off-axis Targets in Conformal Arc Stereotactic Body Radiation Therapy

  • Smith, Ashley;Kim, Siyong;Serago, Christopher;Hintenlang, Kathleen;Ko, Stephen;Vallow, Laura;Peterson, Jennifer;Hintenlang, David;Heckman, Michael;Buskirk, Steven
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.288-297
    • /
    • 2014
  • Dynamic conformal arc therapy (DCAT) and flattening-filter-free (FFF) beams are commonly adopted for efficient conformal dose delivery in stereotactic body radiation therapy (SBRT). Off-axis geometry (OAG) may be necessary to obtain full gantry rotation without collision, which has been shown to be beneficial for peripheral targets using flattened beams. In this study dose distributions in OAG using FFF were evaluated and the effect of mechanical rotation induced uncertainty was investigated. For the lateral target, OAG evaluation, sphere targets (2, 4, and 6 cm diameter) were placed at three locations (central axis, 3 cm off-axis, and 6 cm off-axis) in a representative patient CT set. For each target, DCAT plans under the same objective were obtained for 6X, 6FFF, 10X, and 10FFF. The parameters used to evaluate the quality of the plans were homogeneity index (HI), conformality indices (CI), and beam on time (BOT). Next, the mechanical rotation induced uncertainty was evaluated using five SBRT patient plans that were randomly selected from a group of patients with laterally located tumors. For each of the five cases, a plan was generated using OAG and CAG with the same prescription and coverage. Each was replanned to account for one degree collimator/couch rotation errors during delivery. Prescription isodose coverage, CI, and lung dose were evaluated. HI and CI values for the lateral target, OAG evaluation were similar for flattened and unflattened beams; however, 6FFF provided slightly better values than 10FFF in OAG. For all plans the HI and CI were acceptable with the maximum difference between flattened and unflattend beams being 0.1. FFF beams showed better conformality than flattened beams for low doses and small targets. Variation due to rotational error for isodose coverage, CI, and lung dose was generally smaller for CAG compared to OAG, with some of these comparisons reaching statistical significance. However, the variations in dose distributions for either treatment technique were small and may not be clinically significant. FFF beams showed acceptable dose distributions in OAG. Although 10FFF provides more dramatic BOT reduction, it generally provides less favorable dosimetric indices compared to 6FFF in OAG. Mechanical uncertainty in collimator and couch rotation had an increased effect for OAG compared to CAG; however, the variations in dose distributions for either treatment technique were minimal.

Optical Setup for Full-Field Imaging Test of MATS Limb Telescope

  • Lee, Sunwoo;Hammar, Arvid;Park, Woojin;Chang, Seunghyuk;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.68.3-68.3
    • /
    • 2018
  • The MATS (Mesosphere Airglow / Aerosol Tomography Spectroscopy) satellite is a Swedish scientific microsatellite which Kyung Hee University participates in developing. The limb telescope of the MATS satellite is designed with linear astigmatism-free off axis optical configuration which allows wide field of view ($5.67^{\circ}{\times}0.91^{\circ}$). Here we present the full-field optical performance test setup that consists of a point source, a collimator, the limb telescope and a CCD (Charged Coupled Device). The incidence angle of the collimator was carefully controlled by the rotary stage under the limb telescope. The imaging tests represent expected results without dominant aberrations.

  • PDF

위성탑재용 카메라 광학부 예비설계

  • Lee, Seung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.177-187
    • /
    • 2002
  • Some kinds of precision optical systems for spaceborne high resolution cameras were designed at preliminary design level and an optical design for a hyperspectral imager was performed for its development model. A Cassegrain-based catadioptric system and an unobscured reflective triplet system are illustrated in detail for spaceborne high resolution electro optical cameras which have performance of 5m resolution at an altitude of 685km and the design are evaluated in its spot-diagram and MTF to prove they have good performance enough to implement the requirements for realistic satellite payload taking the fabrication conditions and the on-orbit operation into consideration. For the development of hyperspectral imager as a next-generation payload, an optical system has been designed and elaborated. It can be divided into two parts, a catoptric telescope forming an off-axis 2 mirror type and a dispersive spectrometer which comprises collimator, grating and reimaging lens cell. From its optical design to the system characteristics are shown with the MTF performance reaching 25% approximately.

  • PDF

IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

  • Rukdee, Surangkhana;Park, Chan;Kim, Kang-Min;Lee, Sung-Ho;Chun, Moo-Young;Yuk, In-Soo;Oh, Hee-Young;Jung, Hwa-Kyoung;Lee, Chung-Uk;Lee, Han-Shin;Rafal, Marc D.;Barnes, Stuart;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.233-244
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold mirror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.