• Title/Summary/Keyword: Off axi-position

Search Result 2, Processing Time 0.016 seconds

A PIV STUDY OF VORTEXING DURING DRAINING FROM Cylindric CONTAINERS (원형 용기의 중심에서 벗어난 유출구 위치에 따른 회전배수 특성의 PIV 연구)

  • Ju, M.G.;Sohn, C.H.;Gowda, B.H.L.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.89-92
    • /
    • 2007
  • In the present study, the flow field in a square container with various comer rounding is studied to investigate drain flow characteristics. An attempt has been made to understand the mechanism that is responsible for vortex suppressing by the different radius of rounding at the comer. For this purpose, flow visualization studies using PIV (Particle Image Velocimetry) are employed to determine the flow patterns in a square tank. Results are obtained when there is no draining and with draining. The flow field is visualized both in horizontal and vertical planes.

  • PDF

Experimental Study of the Multi-Row Disk Inlet

  • Maru, Yusuke;Kobayashi, Hiroaki;Kojima, Takoyuki;Sato, Tetsuya;Tanatsugu, Nobuhiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.634-643
    • /
    • 2004
  • In this paper are presented a concept of a new supersonic air inlet, which is designated a Multi-Row Disk (MRD) inlet, aiming at performance improvement under off-design conditions, and results of wind tunnel tests examined performance characteristics of the MRD inlet. The MRD inlet is frequently called ‘a skeleton inlet’ because of its appearance. The performance of a conventional axisymmetric inlet with a solid center body (spike) deteriorates under off-design Mach number conditions. It is due to the fact that total pressure recovery (TPR) governed by the throat area of inlet and mass capture ratio (MCR) governed by an incidence position of an oblique shock from the spike tip into the cowl can not be controlled independently in such air inlet. The MRD inlet has the spike that is composed of a tip cone and several disks arranged downstream of it, based on the experimental fact that several deep cavities on a conical surface have little negative effect on the boundary layer growth. The overall spike length of the MRD inlet is adjustable to the given flight speed by changing space between disks so that a spillage flow can be controlled independently from controlling the throat area. It could be made clear from the result of wind tunnel tests that the MRD inlet improves TPR by 10% compared with a conventional inlet with a solid spike under off-design conditions.

  • PDF