• Title/Summary/Keyword: Ofdm Signals

Search Result 199, Processing Time 0.026 seconds

Walsh Coded Training Signal Aided Time Domain Channel Estimation Scheme In MIMO-OFDM Systems (MIMO-OFDM 시스템에서 Walsh 부호화된 훈련 신호를 이용한 시간 영역 채널 추정 방식)

  • Jeon, Hyoung-Goo;Jang, Jong-Wook;Song, Hyoung-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.331-337
    • /
    • 2007
  • In this paper, we propose a novel Walsh coded training signal design and Walsh decoding method to estimate the channel response in MIMO-OFDM systems. The Walsh coded training signals are designed to have orthogonal property in time domain. Using the orthogonal property, the Walsh decoding process makes it possible to separate the desired training signal from the received signal and to estimate the channel response. The computer simulation results show that the proposed method exhibits almost the same performance as Li's original method using the optimal training sequence, even though the proposed method has much lower complexity.

Blind OFDM Synchronization Algorithm using Cyclic Correlation (순환상관(Cyclic Correlation)을 이용한 OFDM 시스템에서의 블라인드 동기 알고리즘)

  • Park Byungjoon;Ko Eunseok;Kang Changeon;Hong Daesik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.92-98
    • /
    • 2005
  • In this paper, blind synchronization algorithm is developed for estimating jointly timing and frequency offset of OFDM system. The proposed estimator exploits the second-order cyclostationarity of received signals, and then uses the information of symbol timing and carrier frequency offset appeared in the cyclic correlation. As a bling estimator, the information of impulse response of channel and training symbols are not required. The performance of the proposed method is consistent in spite of channel conditions in mean squre error sense, and simulation results prove it. For more accurate estimaion, the method that averages cyclic correlation is applied. In this case, the performance of averaging method is better.

A OFDM PAPR Reduction Scheme Using Sub-sequence Phase Optimization (서브 시퀀스 위상 최적화 (SPO)를 이용한 OFDM 신호의 PAPR 저감 방법)

  • Yoon, Yeo-Jong;Lim, Sun-Min;Eun, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.117-126
    • /
    • 2005
  • In this paper, we present a new method for the reduction of the PAPR (peak to average power ratio) of OFDM signals. The idea behind the proposed method is that IFFT is implemented often with software for a digital signal processor such that we may avoid the repeated calculations to reduce the computational operations: we define sub-sequences in the IFFT process and then multiply the optimum phase rotation factors to them to minimize the PAPR. The PAPR reduction performance of the proposed method is equal to that of the interleaved partition scheme of the PTS (partial transmit sequence) method with only 1/3 computational operations of it.

Peak-to-Average Power Ratio of Orthogonal Frequency Division Multiplexing with ICI Self-Cancellation (채널간간섭 자기소거법이 적용된 직교 주파수분할다중화의 첨두전력 대 평균전력비)

  • Kang Seog Gen
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) with respect to the subchannel coding schemes for interchannel interference (ICI) self-cancellation is analyzed. It is shown theoretically and experimentally that a shaping component is generated in the transmitted sequence in the conventional correlative coding where a pair of antipodal signals is assigned in adjacent subchannels. Due to the shaping component, the signal powers in the mid and edges of a symbol are scaled by different weighting coefficients, resulting in increased PAPR. To overcome this problem a simple adjacent subchannel coding scheme is presented in this paper. In the new scheme, the shaping component caused by partial repetition of signals is eliminated by assigning a pair of signals in which phase difference varies signal-to-signal. As results, the new scheme has 2-3 dB smaller PAPR than the conventional ICI self-cancellation OFDM while maintaining much higher carrier-to-interference ratio than a normal OFDM system.

Trellis-coded $\pi$/8 shift 8PSK-OFDM with Sliding Multiple Symbol Detection (흐름 다중 심벌 검파를 사용한 트렐리스 부호화된 $\pi$/8 shift 8PSK-OFDM)

  • ;;;Zhengyuan Xu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.535-543
    • /
    • 2002
  • In this paper, we propose $\pi$/8 shift 8PSK and trellis-coded $\pi$/8 shift 8PSK-OFDM techniques by applying $\pi$/4 shift QPSK to trellis-coded modulation (TCM), and performing signal set expansion and set partition correspondingly based on phase difference. In our Viterbi decoding algorithm, up to L phase differences from successively received symbols are employed in the new branch metrics. Such sliding multiple symbol detection (SMSD) method provides improved bit-error-rate (BER) performance in the differential detection of the trellis-coded $\pi$/8 shift 8PSK-OFDM signals. The performance improvements are achieved for different communication channels without sacrificing bandwidth and power efficiency. It thus makes the proposed modulation and sliding detection scheme more attractive for power and band-limited systems.

A Phase Noise Reduction Scheme for OFDM Systems (OFDM 시스템의 위상잡음 감쇄기법)

  • Park Kyung-won;Jeon Won-gi;Paik Jong-ho;Yang Won-young;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6A
    • /
    • pp.465-473
    • /
    • 2005
  • In this paper, the reduction scheme of Interchannel Interference(ICI) caused by the phase noise in Orthogonal Frequency Division Multiplexing(OFDM) systems for archiving high data rates is proposed. The performance of conventional common phase error(CPE) compensation method is degraded by the phase noise with wide 3dB bandwidth in OFDM systems width a higher-order constellation. After estimating dominant ICI coefficients using pilot subcarriers and data subcarriers adjacent to pilot subcarriers, the proposed scheme compensates OFDM signals distorted by the phase noise using estimated coefficients in the time or frequency domain. Also, in order to determine the length of dominant ICI coefficients effectively, the estimation method of the 3dB bandwidth of the phase noise is proposed. The proposed phase noise reduction method is shown to improve the Bit Error Ratio(BER) performance compared with the conventional CPE compensation.

A Study on the Next Generation Dedicated Short Range Communication System using OFDM (OFDM 방식의 차세대 단거리전용 통신 시스템 성능 개선에 관한 연구)

  • Kim, Man-Ho;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.394-399
    • /
    • 2006
  • In this paper, we investigated performance for 5.8GHz dedicated short range communication system using OFDM which will be applied to Intelligent transportation system services. The maximum speed of a vehicle in DSRC channel is very fast as 180km/h, so a service time is very short to serve a various traffic information if hand-off is not occurred. Therefore higher bit rate is required to proved advanced and intelligent service to the drivers of various vehicle and the data transmission rate of the next generation DSRC system if being promoted over 10Mbps. The signals received in Clarke & Gans channel have been simulated using the computer simulator.

  • PDF

Channel Estimation for OFDM Systems under Non-Sampled Space and Fast Time-Varying Channels (비 샘플 간격을 갖는 빠른 시변 채널 환경에서의 OFDM 시스템을 위한 채널 추정 기법)

  • 김동주;정성순;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.238-246
    • /
    • 2004
  • In this paper, an estimator that take advantages of time and frequency correlation within an OFDM symbol is investigated. OFDM systems using the proposed estimator can be very effective in detecting signals under non-sampled space and time-varying channels. Also, under same complexity, the proposed estimator outperforms the previously proposed estimator. Since even if there are no assumption about channel correlation, the linear interpolation method instead of optimal interpolation using correct channel correlation is proposed in case the receiver does not know the channel correlation function in time domain. Therefore the proposed channel estimator help improving the performance of OFDM systems under non-sampled spaced and fast time-varying channels.

Analysis of Nonlinearity of RF Amplifier and Back-Off Operations on the Multichannel Wireless Transmission Systems. (다 채널 무선 전송 시스템의 RF증폭기의 비선형 및 백-오프 동작 분석)

  • 신동환;정인기;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.18-27
    • /
    • 2004
  • In this paper, we presents an analytical simulation procedure for evaluation in baseband digital modulated signals distortions in the present of RF power amplifier(SSPA) nonlinear behavior and backoff operations of OFDM wireless transmission system. we obtained the optimum nonlinear transfer function of designed SSPA with the SiGe HBT bias currents of OFDM multi-channel wireless transmission system and compared this transfer function to SSPA nonlinear modeling functions mathematically, we finds optimum bias conditions of designed SSPA. With the derived nonlinear modeling function of SSPA, We analysed the PSD characteristics of in-band and out-band output powers of SSPA EVM measurement results of distorted constellation signals with the input power levels of SSPA. The results of paper can be applied to find the SSPA linearly with optimum bias currents and determine the SSPA input backoff bias for AGC control circuits of SSPA.

A New Selected Mapping Scheme without Side Information Using Cross-Correlation (상호 상관을 이용한 부가정보가 필요 없는 Selected Mapping 수신방법 제안)

  • Lee, Jong-keun;Chang, Dae-ig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.739-746
    • /
    • 2017
  • Orthogonal frequency division multiplexing(OFDM) systems have many advantages. However, OFDM systems are much affected by a nonlinear distortion because those systems have a high peak to average power ratio(PAPR) value. A selected mapping technology was suggested to reduce a PAPR value. The technology does not have data loss but receivers need side information to know modified phase sequence. Therefore, side information causes decreased a transmission efficiency. In this paper, we suggest a blind SLM receiver using a cross correlation technology. This receiver does not require side information. The proposed blind SLM receiver calculates sums of cross-correlation between transmitted pilot signals multiplied by each phase sequence and received pilot signals. So, this receiver detects side information which has a maximum sum cross-correlation value. We compared our proposed SLM receiver to a conventional blind SLM receiver through bit error rate(BER) and side information error rate(SIER) performances. Simulation results show that the proposed SLM receiver has improved BER and SIER performances than the conventional SLM receiver.