• Title/Summary/Keyword: Odor causing compounds

Search Result 43, Processing Time 0.035 seconds

The Study of Odor-causing Compounds Emitted from a Stuffing Agent Production Process (가지제(加脂劑) 생산공정에서 배출되는 악취원인물질 연구)

  • Seo, Yong-Soo;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.781-788
    • /
    • 2018
  • The volatile odor compounds emitted form a stuffing agent production process were quantified by ATD and GC-MS, and then odor causing compounds were identified by the method of EOI using each TLV. As the results, 72 odor compounds were detected and total concentration was turned up 87.6 ppmv level. In these compounds, aldehyde group is higher 45.49 ppmv than others group, the next is turn up the order of aliphatics, alcohols, esters, ketones. The EOA of aldehyde group show up 101,720 and 97.2%, respectively, the odor causing compounds were identified each of odor 2-Octenal 28.31%, Hexanal 24.06%, Valeraldehyde 16.07%, Butyraldehyde 9.69%, Heptanal 4.97%, Propionaldehyde 4.64%, Acetaldehyde 3.31%. The TLVs of 7 major odor compounds are lower value level of 0.001~0.0001 ppmv, odor causing even in trace level. We need to be concerned with reduction of aldehyde compounds in the odor problem by a stuffing agent production process or ironing process of the textile containing a stuffing agent.

Emission Characteristics of Odors and Odorants Released from Grilling Mackerel and Pork Belly by Different Cooking Tools

  • Kim, Hyun-Jeong;Yu, Mee-Seon;Yang, Sung-Bong
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1763-1773
    • /
    • 2014
  • It is known that mackerel and pork belly release a strong odor in the process of roasting. We evaluated a dilution factor of odor arising during roasting mackerel or pork belly and the relative odor strength using several cooking tools and analyzed compounds causing odors with gas chromatograph/mass detector. Roasting pans used were grill with lid, electric grill without lid and general roasting pan, and a grill with lid can attach the activated carbon charcoal deodorant at the inside of lid. And all electric grills have a drip tray under the heater. We investigated characteristics of odor emission depending on the presence of water and deodorants in these cooking tools. Study has shown that roasting mackerel produces approximately 36 time more odors than roasting pork belly, and the reduced odor emission when roast with water. And it shows the reduced deodorant effect when cooked with water after attaching activated carbon charcoal in the cooking pan. Major odor causing compounds arising when cooking mackerel and pork belly were aldehydes with high boiling point such as octyl aldehyde with a low odor threshold value.

Air stripping of odor causing materials from eutrophic lake water (부영양호 원수의 냄새유발 물질 탈기 특성)

  • Park, Noh-Back;Song, Yong-Hyo;Na, Gywang-Joo;Park, Sang-Min;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.523-529
    • /
    • 2008
  • Algal blooms in a local eutrophic lake often produces the musty and earthy taste & odor problems. Since the odor causing compounds(OCCs) including geosmin and 2-MIB have their own volatility, the OCCs can be removed from water by air stripping methods. Removal of TON(threshold odor number) as an index for OCCs could be fitted well with the first order equations($R^2=0.9$ above), where the air stripping coefficient of TON, k was in the range between 0.0055 and 0.0097 according to the aeration time. k within 30min aeration tests was 0.0097, while it was 0.0055 where the aeration time extended to 150min. With 15 mg/L of PAC, removal of TON was not simulated with 1st order equation within 30min aeration. Within 30min aeration, OCCs rather than geosmin and/or 2-MIB could be removed easily by air stripping or PAC adsorption, while OCCs such as geosmin and/or 2-MIB could be removed slowly by air stripping after 30min aeration. Geosmin and 2-MIB were not readily removed by air stripping(k of them were 0.0018~0.0047 and 0.0018~0.0034, respectively at different air flow rates). Geosmin could be removed by air stripping a little better than 2-MIB.

Investigation of odor Release from Combined Sewer (합류식 하수도의 악취발생 실태 연구)

  • Gil, Kyung-Ik;Shin, Geon-Cheol;Im, Ji-Yeol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.185-191
    • /
    • 2010
  • This study investigates the odor from combined sewer in urban areas and major odor-causing facilities. Monitorings are conducted in specific areas that have representative characteristics. In combined sewer in urban areas, the real-time monitorings on sulfur, complex odor and specified odor are conducted. And in major odor-causing facilities, the real-time monitorings on complex odor, specified odor are conducted. Odor from combined sewer in urban area is affected by the changes on floating population and the effluent of the septic tank. Also major odor-causing facilities are largely affected by the effluent of the septic tank. The major odor-causing substances are found to be hydrogen sulfide($H_2S$) and methyl mercaptan. To reduce the odor from combined sewer, improvement of effluent from the septic tank and reduction of sulfur compounds have to be done.

A Study on Odor and Taste from Nam River (남강의 수중보에서 발생하는 이취미 물질에 관한 연구)

  • 이춘식;박현건
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.399-403
    • /
    • 2002
  • This study was designed to analyse the odor from Nam river. The characteristic odor in the water occurred from geosmin and phenol, p-cresol and indol were detected from sediment/water samples. The others were detected as alcohols and fat acid compounds. Algae causing odor and taste were identified as Oscillatoria sp. and Synedra acus. 15 species of phytoplankton, a zooplankton, an eelworm and chironomus were identified in water/sediment sample.

Determination of Malodor-causing Chemicals Produced by Microorganisms Inside Automobile (차량 내 미생물에 의해 생성되는 악취유발 화학물질의 분석)

  • Park, SangJun;Kim, EuiYong
    • KSBB Journal
    • /
    • v.29 no.2
    • /
    • pp.118-123
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms getting into an air-conditioner when it is operating. Chemicals such as hydrogen sulfide, dimethyl sulfide, nbutyric acid, n-valeric acid, iso-valeric acid, n-octanol and toluene were detected above the odor threshold inside the automobile. The characteristics of a funky odor in the air blown into the automobile were due to detected sulfur compounds (hydrogen sulfide and dimethyl sulfide). Dimethyl sulfide was produced by microorganisms such as Aspergillus versicolor, Methylobacterium aquaticum, Herbaspirillum sp. and Acidovorax sp. In addition, the characteristics of a sour odor in the air blown into the automobile were due to detected organic acids (n-butyric acid, n-valeric acid and iso-valeric acid). N-valeric acid and iso-valeric acid were generated from Aspergillus versicolor, while iso-valeric acid was produced by Methylobacterium aquaticum. In addition, the odor intensity of the air blown into the automobile was affected by the concentration of detected sulfur compounds and organic acids. On the other hand, it is estimated that chemicals such as hydrogen sulfide, n-octanol and n-butyric acid detected in the air blown into the automobile were produced by non-identified species of microorganisms.

Current Status and Perspectives of Livestock Environment Improving Agents for the Characteristics and Control of Swine Manure Odor (양돈 분뇨의 악취특성 및 문제 해결을 위한 환경개선제 사용 현황 및 전망)

  • Lee, Eun-Young;Lim, Jung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.244-254
    • /
    • 2010
  • The trend toward intensification of livestock raising, confinement in barn has increased in recent days. The move toward concentrated animal feeding operations reduces per unit costs and permits farmers to better earnings in spite of fluctuation in hog prices. However, this also results in outbreaks of a lot of animal wastes and odorous compounds. Emissions of these malodorous compounds produced from concentrated animal feeding operations have become a concern for both public and regulatory agencies and are causing the complaints of residents in rural area. For competitive sustainable swine production industry, odor management plans systematically identify potential odor sources, determine control strategies to reduce these odors, and establish criteria for implementing these strategies. Since, the malodor originates from microbial activities involving a variety of microbes, understanding the characteristics of the microflora present in swine manure is essential for developing effective odor control techniques. This paper reviews the available information in the literature related to the types of bacteria in swine manure, the potential odorous compounds associated with different bacterial genera, and the corresponding techniques used to control odor based on microbiological principles.

A Study on the Odor Compounds Emitted using Odor Contribution Analysis - Focus on the Ochang Scientific Industrial Complex Area - (악취기여도평가를 이용한 악취원인물질 연구 - 오창과학산업단지를 중심으로 -)

  • Jung, Ji-Sun;Kim, Duk-Chul;Lee, Han-Chul;Yeon, Seoung-Won;Yeon, Ik-Jun
    • Journal of Environmental Science International
    • /
    • v.25 no.9
    • /
    • pp.1329-1339
    • /
    • 2016
  • The purpose of this study was to obtain the basic data needed to identify the impact of the odor, emitted from the Ochang Scientific Industrial Complex area on the surrounding residential areas by measuring and confirming odor compounds. The analysis showed that complex odors were diluted from around 4 to 1. The offensive odor measurement results showed that among the sites, site 1 was highest in sulfur compounds, site 2 was highest in toluene, site 3 was highest in trimethylamine, and site 4 was highest in buthylaldehyde. It cannot be decided to be odor-causing compounds for higher odor concentration because each odor substance has a different odor threshold value. According to the odor contribution analysis for each site, site 1, site 2, and site 4 contained high buthylaldehyde concentrations, and site 3 had a high level of trimethylamine. It could be determined that highly evaluated substances were main causes to result in substance for each site.

Removal of Taste and Odor by Powdered Activated Carbon Adsorption and Air Stripping (분말활성탄 흡착 및 탈기에 의한 이취미 제거)

  • Jun, Hang-Bae;Na, Kwang-Ju;Seo, Tae-Kyeong;Park, Sang-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.455-460
    • /
    • 2008
  • Powered activated carbon(PAC) has been widely applied for controling odor causing compounds(OCCs) from water treatment plants. Because of their volatility, the OCCs can also be removed from water by air stripping methods. In this study, OCCs removal was tested with PAC adsorption, air stripping, and both PAC adsorption and air stripping from the Taecheong lake water. Removal efficiency of OCCs in terms of threshold odor number(TON) were 39.6% by both PAC (15mg/L) adsorption and aeration for 30 min, 33.6% by PAC(15mg/L) adsorption alone for 30 min, and 22.9% by aeration alone for 30 min, respectively. OCCs could be removed up to 50% by aeration for 120 min without PAC adsorption. At an extended aeration with 15mg/L of PAC, OCCs removal occurred mainly by PAC adsorption within 30 min aeration while it continued by air stripping afterward. At simulated jar tests with the raw water, removal efficiencies of geosmin and MIB were 48.3, 36.1% by coagulation and sedimentation without PAC addition. With 15mg/L of PAC on the same jar tests, the removal efficiencies were 83.1, 60.1%, respectively. Without PAC, OCCs could be possibly removed by stripping during the agitation processes.

The Characteristic and Management of Odor Emitted from Foodwaste Treatment Facility (음식물류폐기물 처리시설에서의 악취발생 특성 및 관리방안)

  • Yoo, Seung-Sung;Kim, Young-Doo;Lee, Jun-Yeon;Cha, Young-Seop;Kim, Eun-Sook;Jeon, Jae-Sik;Sunwoo, Young;Eom, Seok-Won;Chae, Young-Zoo
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.353-365
    • /
    • 2012
  • This study is understanding characteristics and analyzing contributions of the odor causing compounds of complex-odor & major specified odor materials, and contribution analysis, caused pre-treatment facilities(input and storage) and post-treatment facilities(heating and drying). The target of this study is feeds-production-facilities, located in Seoul. The averaged complex-odor compounds on the boundary line is 21 times higher, and it is 15 times higher than emission standards. In cracking&collection(pre-treatment facilities), the concentration of compounds is 4,881 times, 2,080 times in drying, and 1,442 times in putting&storing facilities. Ammonia occupies the largest portion of the results of monitoring specified odor compounds in input&storage facilities, followed Acetaldehyde > Hydrogen sulfide > Methyl mercaptan. In cracking&collection, Ammonia also occupies most of odor compounds, followed Methyl mercaptan > Acetaldehyde > Dimethyl disulfide > Dimethyl sulfide > Hydrogen sulfide. Acetaldehyde > Methyl mercaptan in drying facilities. On the boundary line, however, the concentration of specified odor compounds stays below emission standards. The result of contribution analysis is that methyl mercaptan has the highest contribution in input & storage, as well as cracking&collection facilities, followed Acetaldehyde > Hydrogen sulfide > Dimethyl sulfide > Dimethyl disulfide. In the drying facilities, the contribution shows Methyl mercaptan > Acetaldehyde > i-Valeraldehyde and Butyraldehyde. Therefore, to decrease odor in foodwaste treatment facilities, proper prevention facilities need to be installed and operated, according to characteristics of individual odor compounds, based on monitored data.