• Title/Summary/Keyword: Odor Sensor

Search Result 56, Processing Time 0.051 seconds

Basic Study on Quality Assurance of Concrete Structure by using Odor Sensor (후각센서 사용에 의한 콘크리트 구조물의 품질평가에 관한 기초적 연구)

  • Shirokado, Yoshitsugu;Kagaya, Makoto;Lee, Sang-Hun
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.42-42
    • /
    • 2010
  • In order to assure the quality of concrete structure in construction process, the odor strength measured by using odor sensor was used to evaluate curing effect. Then, the compressive strength and odor strength in ordinary concrete N were shown in water curing(=standard curing), indoor and outdoor atmospheric curing condition. The difference between odor strength in the standard curing and that in each curing condition was defined as the difference in the odor strength. And the difference in odor strength in slag powder concrete BP cured in water curing(=standard curing) for different period before exposing in outdoor atmosphere in winter season were evaluated at the age of 14 days. A necessity to prolong the moisture curing for the slag powder concrete BP compared with the ordinary concrete N to obtain a required curing effect was shown by measuring the odor strength and long term compressive strength.

  • PDF

Evaluation of Metal Oxide Semiconductor and Electrochemical Gas Sensor Array Characterization for Measuring Wastewater Odor (폐수의 악취측정을 위한 금속산화물 반도체 및 전기화학식 가스센서 어레이 특성 평가)

  • Yim, Bongbeen;Lee, Seok-Jun;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • This study aimed to evaluate the characterization of a metal oxide semiconductor and electrochemical gas sensor array for measuring wastewater odor. The sensitivity of all gas sensors observed in sampling method by stripping was 6.7 to 20.6 times higher than that by no stripping, except sensor D (electrochemical gas sensor). The average reduction ratio of sensor signal as a function of initial dilution rate of wastewater was in the order of food plant > food waste reutilization facility > plating plant. The sensitivity of gas sensors was dependent on both the type of wastewater and the dilution rate. The sensor signals observed by the gas sensor array were correlated with the dilution factor (OU) calculated by the air dilution sensory test with several wastewater ($r^2=0.920{\sim}0.997$), except the sensor signals of sensor D measured in the plating plant wastewater. It seems likely that the gas sensor array plays a role in the evaluation of odor in wastewater and is useful tool for on-site odor monitoring in the wastewater facilities.

Post-processing Technique for Improving the Odor-identification Performance based on E-Nose System

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.368-372
    • /
    • 2015
  • In this paper, we proposed a post-processing technique for improving classification performance of electronic nose (E-Nose) system which may be occurred drift signals from sensor array. An adaptive radial basis function network using stochastic gradient (SG) and singular value decomposition (SVD) is applied to process signals from sensor array. Due to drift from sensor's aging and poisoning problems, the final classification results may be showed bias and fluctuations. The predicted classification results with drift are quantized to determine which identification level each class is on. To mitigate sharp fluctuations moving-averaging (MA) technique is applied to quantized identification results. Finally, quantization and some edge correction process are used to decide levels of the fluctuation-smoothed identification results. The proposed technique has been indicated that E-Nose system was shown correct odor identification results even if drift occurred in sensor array. It has been confirmed throughout the experimental works. The enhancements have produced a very robust odor identification capability which can compensate for decision errors induced from drift effects with sensor array in electronic nose system.

A technology of realistic multi-media display and odor recognition using olfactory sensors (후각 센서를 이용한 냄새 인식 및 실감형 멀티미디어 표현 기술)

  • Lee, Hyeon Gu;Rho, Yong Wan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.4
    • /
    • pp.33-43
    • /
    • 2010
  • In this paper, we propose a floral scent recognition using odor sensors and a odor display using odor distribution system. Proposed odor recognition has method of correlation coefficient between sensors that select optimal sensors in floral scent recognition system of selective multi-sensors. Proposed floral scent recognition system consists of four module such as floral scent acquisition module, optimal sensor decision module, entropy-based floral scent detection module, and floral scent recognition module. Odor distribution system consists of generation module of distribution information, control module of distribution, output module of distribution. We applied to floral scent recognition for performance evaluation of proposed sensors decision method. As a result, application of proposed method with floral scent recognition obtained recognition rate of 95.67% case of using 16 sensors while applied floral scent recognition system of proposed sensor decision method confirmed recognition rate of 96% using only 8 sensors. Also, we applied to odor display of proposed method and obtained 3.18 thorough MOS experimentation.

Signal Processing Techniques Based on Adaptive Radial Basis Function Networks for Chemical Sensor Arrays

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.161-172
    • /
    • 2016
  • The use of a chemical sensor array can help discriminate between chemicals when comparing one sample with another. The ability to classify pattern characteristics from relatively small pieces of information has led to growing interest in methods of sensor recognition. A variety of pattern recognition algorithms, including the adaptive radial basis function network (RBFN), may be applicable to gas and/ or odor classification. In this paper, we provide a broad review of approaches for various types of gas and/or odor identification techniques based on RBFN and drift compensation techniques caused by sensor poisoning and aging.

Improvement of Long-term Stability in $SnO_2$ Based Gas Sensor for Monitoring Offensive Odor

  • Park, Jong-Hun;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.304-308
    • /
    • 2000
  • WO$_3$/SnO$_2$ceramics has been suggested as an effective sensing material for monitoring offensive odor or pollutant gases. This work was focussed on improving long-term stability, which has been a principal problem generally taking place in SnO$_2$semiconductor gas sensor. Miniaturized thick film gas sensors were fabricated by screen printing technique. Two types of sensor materials, W doped SnO$_2$and WO$_3$mixed SnO$_2$, were comparatively investigated on those long-term stability and sensitivites to several gases. Small amount of W doping(0.1 mol%) into SnO$_2$largely improved the long-term stability. The W(0.1 mol%) doped SnO$_2$gas sensor had higher sensitivities to both acetone and alcohol compared with WO$_3$(5 wt%) mixed SnO$_2$gas sensor. On the contrary, WO$_3$(5 wt%) mixed SnO$_2$gas sensor showed more superior sensitivity to cigarette smoke due to larger W content.

  • PDF

Intelligent Air Quality Sensor System with Back Propagation Neural Network in Automobile

  • Lee, Seung-Chul;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.468-471
    • /
    • 2005
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. One chip sensor module which include above two sensing elements, humidity sensor and bad odor sensor was developed for AQS (air quality sensor) in automobile. With this sensor module, PIC microcontroller was designed with back propagation neural network to reduce detecting error when the motor vehicles pass through the dense fog area. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation. One chip microcontroller, Atmega128L (ATmega Ltd., USA) was used. For the control and display. And our developed system can intelligently detect the bad odor when the motor vehicles pass through the polluted air zone such as cattle farm.

  • PDF

A Method of Optimal Sensor Decision for Odor Recognition (냄새 인식을 위한 최적의 센서 결정 방법)

  • Roh, Yong-Wan;Kim, Dong-Ku;Kwon, Hyeong-Oh;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.9-14
    • /
    • 2010
  • In this paper, we propose method of correlation coefficients between sensors by statistical analysis that selects optimal sensors in odor recognition system of selective multi-sensors. The proposed sensor decision method obtains odor data from Metal Oxide Semiconductor(MOS) sensor array and then, we decide optimal sensors based on correlation of obtained odors. First of all, we select total number of 16 sensors eliminated sensor of low response and low reaction rate response among similar sensors. We make up DB using 16 sensors from input odor and we select sensor of low correlation after calculated correlation coefficient of each sensor. Selected sensors eliminate similar sensors' response therefore proposed method are able to decide optimal sensors. We applied to floral scent recognition for performance evaluation of proposed sensors decision method. As a result, application of proposed method with floral scent recognition using correlation coefficient obtained recognition rate of 95.67% case of using 16 sensors while applied floral scent recognition system of proposed sensor decision method confirmed recognition rate of 94.67% using six sensors and 96% using only 8 sensors.

Odor Cognition and Source Tracking of an Intelligent Robot based upon Wireless Sensor Network (센서 네트워크 기반 지능 로봇의 냄새 인식 및 추적)

  • Lee, Jae-Yeon;Kang, Geun-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • In this paper, we represent a mobile robot which can recognize chemical odor, measure concentration, and track its source indoors. The mobile robot has the function of smell that can sort several gases in experiment such as ammonia, ethanol, and their mixture with neural network algorithm and measure each gas concentration with fuzzy rules. In addition, it can not only navigate to the desired position with vision system by avoiding obstacles but also transmit odor information and warning messages earned from its own operations to other nodes by multi-hop communication in wireless sensor network. We suggest the way of odor sorting, concentration measurement, and source tracking for a mobile robot in wireless sensor network using a hybrid algorithm with vision system and gas sensors. The experimental studies prove that the efficiency of the proposed algorithm for odor recognition, concentration measurement, and source tracking.

A Study on the Comparison of Odor Reduction by Livestock Farming Using Abelmoschus Manihot Jinhuakui Feed Additives

  • Gok Mi Kim;Jun Su Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.287-292
    • /
    • 2024
  • The problem of odor and environmental pollution caused by livestock manure is spreading greatly as a social issue. To reduce the odor of livestock raised in livestock farms and improve the farm environment, raw materials of Abelmoschus manihot Jinhuakui were put into feed additives to measure the state of odor. It is characterized by being non-toxic and sweet, and Abelmoschus manihot Jinhuakui, which contains abundant nutrients that are beneficial to health in all parts such as roots, stems, and flowers, is a medicinal plant that cannot be discarded. In particular, it has the effect of helping bowel movements because it stimulates bowel movements. Ammonia levels were investigated through the KS X 3279 national standard-applied smart livestock IoT hub sensor pack installed at Flower Garden and Ugil Farm. The purpose of this paper is to reduce the odor that is the most problematic on farms and improve the environment, and it is planned to expand research into deodorants after feed additives. It is hoped that the research results will solve the livestock problem and help livestock farmers.