• Title/Summary/Keyword: Odd Mode Resonator

Search Result 11, Processing Time 0.018 seconds

Design of a Triple-Mode Bandpass Filter Using a Closed Loop Resonator

  • Myung, Jae-Yoon;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.86-90
    • /
    • 2017
  • In this study, a novel third-order bandpass filter, which is based on a rectangular closed loop resonator, is presented. By adding a series resonator to the conventional loop resonator, the resonator's even resonant mode is split into two modes, while the odd resonant mode is not affected. Therefore, by varying the values of the series resonator elements, the resonant frequencies of two even modes can be determined independent of the odd-mode resonant frequency. In the proposed triple-mode filter design, instead of using a lumped series resonator, a T-shaped transmission line is coupled to the resonator via a small gap. To verify the design method, a filter is designed at 2.4 GHz with a bandwidth of 100 MHz. The improved performances of the proposed triple-mode filter are compared with those of the conventional dual mode filter.

Tri-band Microstrip Bandpass Filter Using Dual-Mode Stepped-Impedance Resonator

  • Liu, Haiwen;Lei, Jiuhuai;Zhao, Yulong;Xu, Wenyuan;Fan, Yichao;Wu, Tiantian
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.344-347
    • /
    • 2013
  • This letter presents a compact dual-mode tri-band bandpass filter by using a short-circuited stub-loaded stepped-impedance resonator (SIR) and a short-circuited stub-loaded uniform impedance resonator. Also, a hairpin SIR geometry is introduced to miniature the size of this filter while maintaining excellent performance. The use of a short-circuited stub at the central point of the hairpin SIR can generate two resonant modes in two passbands. Its equivalent circuit structure is analyzed by using the even-odd mode theory. For demonstration purposes, a tri-band filter for the applications of the Global Positioning System at 1.57 GHz, Worldwide Interoperability for Microwave Access at 3.5 GHz, and wireless local area networks at 5.2 GHz is designed, fabricated, and measured.

Design and Fabrication of a Dual-Band Bandpass Filter Using a Dual-Mode Ring Resonator with Two Short-Circuited Stubs for WLAN Application (두 단락 스터브를 갖는 이중 모드 링 공진기를 이용한 WLAN용 이중대역 대역통과 여파기의 설계 및 제작)

  • Choi, Byung-Chang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.814-820
    • /
    • 2015
  • In this paper, A high selective dual-band bandpass filter was proposed using a dual-mode ring resonator with two short-circuited stubs. For dual-mode resonance, the ring resonator is directly connected with non-orthogonal feed-lines via coupling capacitors. Two short-circuited stubs which are unequal lengths are simultaneously placed at two corners along the two symmetry plane of the ring resonator in order to obtain dual-band responses. Because the feeding angle perturbated ring resonator of the proposed dual-band bandpass filter has the symmetrical structure, Even/Odd mode analysis can be well applied to extract the scattering parameters and transmission zero frequencies. The proposed dual-band bandpass filter was designed and fabricated for WLAN(Wireless Local Area Network) application of IEEE 802.11n standard. The measured results showed a good agreement with the simulation results, and it should be well applied not only for WLAN applications but also for any other communication systems.

A Design of the Dual-Band Bandpass Filter Using a Coupling Controllable Dual-Mode Resonators (상·하측 대역의 대역폭 조절이 가능한 이중 대역 대역 통과 필터 설계)

  • Pyo, Hyun-Seong;An, Jae-Min;Kim, Kyoung-Keun;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • In this paper, we designed and fabricated a dual-band bandpass filter which can control upper and lower bandwidth using the transformed E-shaped dual-mode resonator. The filter is made the coupling between even-mode not to affect odd-mode resonant frequency by the transformed resonator to control upper bandwidth effectively. The cross coupling between input and output feed lines was employed to improve stopband characteristic. The bandpass filter has been designed to indicate the same bandwidth at center frequency 2 GHz and 3 GHz to show to control bandwidth.

The Design of 2.4GHz Band LTCC Bandpass Filter using $\lambda/4$ Hairpin Resonators ($\lambda/4$ Hairpin 공진기를 이용한 2.4GHz 대역 LTCC 대역통과 여파기의 설계)

  • Seong Gyu Je;Choe Jae U;Park Hyeon Sik;Park Jang Hwan;Yeo Dong Hun
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.260-264
    • /
    • 2003
  • In this paper, a $\lambda/4$ hairpin resonator is proposed to reduce the size of planar resonators for a LTCC MLC bandpass filter. The $\lambda/4$ hairpin resonator operates as stepped impedance resonator (SIR) without changing the width of the planar resonator. It is composed of two sections those are parallel coupled line and transmission line. The characteristic impedance of two sections is different each other. The design formulas of the bandpass filter using the coupling element at the arbitrary position are derived from even and odd-mode analysis. The formulas can take account of the arbitrary coupling of lumped ana/or distributed resonators. The advantage of this filter is its abilities to change freely the coupling structure between two resonators. Experimental bandpass filters for 2.4GHz Band are implemented and their performances are shown.

  • PDF

New UWB BPF with Steep Selectivity Based on T-Resonator and Capacitively Coupled λ/4 and λ/2 Line Sections

  • Duong, Thai Hoa;Kim, Ihn-Seok
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.164-173
    • /
    • 2009
  • In this paper, two new circuit structures for European and U.S. ultra-wide band(UWB) bandpass filters(BPFs) with sharp roll-off characteristics are introduced. We show first that the ultra-wide bandpass property is obtained from a $\lambda$/4 open T resonator with a capacitively coupled $\lambda$/4 short-circuited line, which provides two attenuation poles at lower and upper cutoff frequencies. Then, two identical capacitively coupled input/output lines, which can be $\lambda$/4-length open ends or $\lambda$/2-length short ends, with the T-resonator, are adopted to suppress lower and higher frequency components outside of the pass band. There is coupling between the input and output lines providing two additional transmission zeros in the lower and upper transition bands of the filter. Since the coupling between the T-resonator with the $\lambda$/4 short-circuited line and the input/output lines limits the bandwidth of the filter to the European UWB band, both the $\lambda$/4 short-circuited line and the input/output lines are inserted between the two stacked T-resonators for the U.S. UWB band. The filter structures are simulated with ADS and HFSS and realized with low-temperature co-fired ceramic(LTCC) green tape which has the dielectric constant of 7.8. Measurement results agree well with HFSS simulation results.

Compact tri-wideband bandpass filter with multiple transmission zeros

  • Xiong, Yang;Wang, LiTian;Gong, Li;He, KaiYong;Zhang, Man;Li, Hui;Zhao, XinJie
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.117-123
    • /
    • 2019
  • This paper presents a tri-wideband bandpass filter (TWB-BPF) with compact size, high band-to-band isolation, and multiple transmission zeros (TZs). The proposed TWB-BPF is based on a multiple-mode resonator (MMR), which is interpreted by the method of the even- and odd-mode analysis technique. The MMR can excite 11 resonant modes, where the first two modes comprise the first passband, the next four modes form the second passband, and the last five modes are used to generate the third passband. In addition, 10 TZs are yielded to obtain high band-to-band isolation and wide stopband suppression characteristics up to $14.95f_{c1}$ ($f_{c1}$ is the center frequency of the first passband). To verify the proposed filter, a TWB-BPF with 3-dB fractional bandwidths (FBWs) of 37.4%, 43.5%, and 40.4% is designed, fabricated, and measured.

The Design of 2.4 GHz Band LTCC Bandpass Filter using $\lambda$/4 Hairpin Resonators ($\lambda$/4 Hairpin 공진기를 이용한 2.4 GHz 대역 LTCC 대역통과 필터의 설계)

  • Sung Gyu-Je
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.7-11
    • /
    • 2004
  • In this paper, a $\lambda$/4 hairpin resonator is applied to reduce the size of planar resonators for a 2.4 GHz Band LTCC MLC bandpass filter. The $\lambda$/4 hairpin resonator operates as stepped impedance resonator (SIR) without changing the width of the planar resonator. It is composed of two sections those are parallel coupled line and transmission line. The characteristic impedance of two sections is different each other. The design formulas of the bandpass filter using the coupling element at the arbitrary position are derived from even and odd-mode analysis. The formulas can take account of the arbitrary coupling of lumped and/or distributed resonators. The advantage of this filter is its abilities to change freely the coupling structure between two resonators. Experimental bandpass filters for 2.4 GHz Band are implemented and their performances are shown.

  • PDF

Design of filters with double coupled line for PCS (이중결합선로를 이용한 PCS용 여파기의 설계)

  • 이창화;구본희김명수이상석
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.387-390
    • /
    • 1998
  • We propose comb-line filter using SIR(Stepped Impedance Resonator) with two transmission line. The coupling structure of the filter is double coupled line where two coupled lines are linked with cascade. We find out the inverter function of the filter. using even and odd mode impedance. The merits of the filter are that first, we can design transmission zero point at any frequency that we wanted without using lumped elements : chip capacitors and inductors. Second, we can design small size filters. To validate the inverter function of the filter with double coupled line we designed and fabricated two-pole band pass filter with the proposed filter structure.

  • PDF

A Study on a New Measurement Method of the Microstrip Parallel Coupled Lne Parameters (마이크로스트립 평행 결합선로 파라미터의 새로운 측정방법에 관한 연구)

  • Chang, Ik-Soo;Yoon, Young-Chul;Ahn, Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.139-143
    • /
    • 1988
  • A new measurement method of coupled transmission line characteristics is described. This method presents precision values of even-and odd-mode impedances as well as effective dielectric constants of symmetric parallel coupled microstrip lines from the scalar quantities obtained by transmission coefficients at two different resonance frequencies. Especially these values include dispersion effects in the measured frequency band. The measured impedances and effective dielectric constants of actually fabricated coupled lines on the Teflon substrates with low dielectric constants are good agreement with predicted values. And the experimental pass band characteristics of single section resonator by using previously designed coupled lines agree well with theoretical values.

  • PDF