• Title/Summary/Keyword: Oceanographic Data

Search Result 349, Processing Time 0.025 seconds

Analysis of Hydraulic Characteristic in Surf Zone using the SWASH Model during Typhoon NAKRI(1412) in Haeundae Beach (SWASH 모형을 이용한 태풍 나크리(NAKRI)에 의한 해운대 해수욕장의 쇄파대 수리특성 해석)

  • Lee, Jong-Sup;Park, Myeong-Won;Kang, Min-Ho;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.591-598
    • /
    • 2015
  • A hydraulic characteristics in the surf zone such as wave breaking points, wave set-down, wave set-up, wave-induced currents and run-up heights are studied using the SWASH model during Typhoon NAKRI(1412) in Haeundae Beach. Incident wave conditions is obtained from one-hourly observed wave data by KHOA and irregular wave by JONSWAP spectrum is given as an open boundary condition in the model. A Wave-induced current patterns by the SWASH model is compared with the observed currents and sediment flux patterns in that areas, the calculated maximum wave run-up heights in the model is compared with the video monitoring data, the empirical formula by Stockdon et al. and Mase. A dominant longshore currents toward the east of the beach appears due to the effect of incident wave direction and the geographical features and some rip currents occurs at the central part of the beach. The maximum wave run-up height(1.15 m) by the SWASH model shows a similar pattern with the video monitoring data(1.26 m) and the magnitude shows a similar result(1.33m) by Stockdon et al.

A Non-annotated Recurrent Neural Network Ensemble-based Model for Near-real Time Detection of Erroneous Sea Level Anomaly in Coastal Tide Gauge Observation (비주석 재귀신경망 앙상블 모델을 기반으로 한 조위관측소 해수위의 준실시간 이상값 탐지)

  • LEE, EUN-JOO;KIM, YOUNG-TAEG;KIM, SONG-HAK;JU, HO-JEONG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.307-326
    • /
    • 2021
  • Real-time sea level observations from tide gauges include missing and erroneous values. Classification as abnormal values can be done for the latter by the quality control procedure. Although the 3𝜎 (three standard deviations) rule has been applied in general to eliminate them, it is difficult to apply it to the sea-level data where extreme values can exist due to weather events, etc., or where erroneous values can exist even within the 3𝜎 range. An artificial intelligence model set designed in this study consists of non-annotated recurrent neural networks and ensemble techniques that do not require pre-labeling of the abnormal values. The developed model can identify an erroneous value less than 20 minutes of tide gauge recording an abnormal sea level. The validated model well separates normal and abnormal values during normal times and weather events. It was also confirmed that abnormal values can be detected even in the period of years when the sea level data have not been used for training. The artificial neural network algorithm utilized in this study is not limited to the coastal sea level, and hence it can be extended to the detection model of erroneous values in various oceanic and atmospheric data.

Impacts of Seasonal and Interannual Variabilities of Sea Surface Temperature on its Short-term Deep-learning Prediction Model Around the Southern Coast of Korea (한국 남부 해역 SST의 계절 및 경년 변동이 단기 딥러닝 모델의 SST 예측에 미치는 영향)

  • JU, HO-JEONG;CHAE, JEONG-YEOB;LEE, EUN-JOO;KIM, YOUNG-TAEG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.49-70
    • /
    • 2022
  • Sea Surface Temperature (SST), one of the ocean features, has a significant impact on climate, marine ecosystem and human activities. Therefore, SST prediction has been always an important issue. Recently, deep learning has drawn much attentions, since it can predict SST by training past SST patterns. Compared to the numerical simulations, deep learning model is highly efficient, since it can estimate nonlinear relationships between input data. With the recent development of Graphics Processing Unit (GPU) in computer, large amounts of data can be calculated repeatedly and rapidly. In this study, Short-term SST will be predicted through Convolutional Neural Network (CNN)-based U-Net that can handle spatiotemporal data concurrently and overcome the drawbacks of previously existing deep learning-based models. The SST prediction performance depends on the seasonal and interannual SST variabilities around the southern coast of Korea. The predicted SST has a wide range of variance during spring and summer, while it has small range of variance during fall and winter. A wide range of variance also has a significant correlation with the change of the Pacific Decadal Oscillation (PDO) index. These results are found to be affected by the intensity of the seasonal and PDO-related interannual SST fronts and their intensity variations along the southern Korean seas. This study implies that the SST prediction performance using the developed deep learning model can be significantly varied by seasonal and interannual variabilities in SST.

Non-astronomical Tides and Monthly Mean Sea Level Variations due to Differing Hydrographic Conditions and Atmospheric Pressure along the Korean Coast from 1999 to 2017 (한국 연안에서 1999년부터 2017년까지 해수물성과 대기압 변화에 따른 계절 비천문조와 월평균 해수면 변화)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.11-36
    • /
    • 2021
  • The solar annual (Sa) and semiannual (Ssa) tides account for much of the non-uniform annual and seasonal variability observed in sea levels. These non-equilibrium tides depend on atmospheric variations, forced by changes in the Sun's distance and declination, as well as on hydrographic conditions. Here we employ tidal harmonic analyses to calculate Sa and Ssa harmonic constants for 21 Korean coastal tidal stations (TS), operated by the Korea Hydrographic and Oceanographic Agency. We used 19 year-long (1999 to 2017) 1 hr-interval sea level records from each site, and used two conventional harmonic analysis (HA) programs (Task2K and UTide). The stability of Sa harmonic constants was estimated with respect to starting date and record length of the data, and we examined the spatial distribution of the calculated Sa and Ssa harmonic constants. HA was performed on Incheon TS (ITS) records using 369-day subsets; the first start date was January 1, 1999, the subsequent data subset starting 24 hours later, and so on up until the final start date was December 27, 2017. Variations in the Sa constants produced by the two HA packages had similar magnitudes and start date sensitivity. Results from the two HA packages had a large difference in phase lag (about 78°) but relatively small amplitude (<1 cm) difference. The phase lag difference occurred in large part since Task2K excludes the perihelion astronomical variable. Sensitivity of the ITS Sa constants to data record length (i.e., 1, 2, 3, 5, 9, and 19 years) was also tested to determine the data length needed to yield stable Sa results. HA results revealed that 5 to 9 year sea level records could estimate Sa harmonic constants with relatively small error, while the best results are produced using 19 year-long records. As noted earlier, Sa amplitudes vary with regional hydrographic and atmospheric conditions. Sa amplitudes at the twenty one TS ranged from 15.0 to 18.6 cm, 10.7 to 17.5 cm, and 10.5 to 13.0 cm, along the west coast, south coast including Jejudo, and east coast including Ulleungdo, respectively. Except at Ulleungdo, it was found that the Ssa constituent contributes to produce asymmetric seasonal sea level variation and it delays (hastens) the highest (lowest) sea levels. Comparisons between monthly mean, air-pressure adjusted, and steric sea level variations revealed that year-to-year and asymmetric seasonal variations in sea levels were largely produced by steric sea level variation and inverted barometer effect.

On the Cold Water Mass in the Korea Strait

  • Lim, Du Byung;Chang, Sun-duck
    • 한국해양학회지
    • /
    • v.4 no.2
    • /
    • pp.71-82
    • /
    • 1969
  • By use of the oceanographic data from 1932 to 1941 and from 1960 to 1967, the general properties of the cold water in the Korea Strait are discussed. This water characterized with temperatures 3-10$^{\circ}C$ and salinities 34.0-34.4 originates from the Japan Sea and begins to flow out in summer along the bottom about 8 to 18 miles southeast of Ulgi in Ulsan. It usually reaches the Pusan- Tsushima section and rarely to the west of the southernmost part of Tsushima. As it flows out, it shows rising trend along the coast of Korea and sometimes upwelling occurs in the vicinity of Ulsan. It seems that the cold water forms an under current along the bottom in summer and autumn in the western channel of the Korea Strait.

  • PDF

Predicting the Invasion Pathway of Balanus perforatus in Korean Seawaters

  • Choi, Keun-Hyung;Choi, Hyun-Woo;Kim, Il-Hoi;Hong, Jae-Sang
    • Ocean and Polar Research
    • /
    • v.35 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • The European Common Barnacle Balanus perforatus Brugiere (Crustacea, Cirripedia) has been introduced into the east coast of Korea, presumably via the ballast water of ships. The species has since been spreading along both the northern and southern coast to the east, most likely due to alongshore currents. We predicted the potential range expansion of Balanus perforatus in Korean waters using Genetic Algorithm for Rule-set Prediction (GARP), an environmental niche modeling technique. The results show that much of the southern coastal waters of Korea could be colonized by the spread of the nonindigenous species, but that the west coast is unlikely to be invaded. More sampling on the west coast would enhance the predictability of the model. To our knowledge, this is the first report of its kind for predicting marine nonindigenous species in Korean waters using GARP modeling.

SECULAR VARIATION OF ZOOPLANKTON BIOMASS IN THE SOUTH SEA OF KOREA (한국 남해의 동물성 플랑크톤량의 경년 변화에 관한 연구)

  • KIM Yong Sool
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.108-114
    • /
    • 1972
  • The present paper deals with secular analysis of zooplankton biomass by statistical method in the south sea of Korea during the period of nine years from 1963 through 1971. Data were taken from the Annual Report of Oceanographic Observations, Fisheries Research and Development Agency, Korea. The trend value of annual variations in the 108 month period above was calculated by method of 12 month moving average, and a period analysis was made by ore of correlogram method using autocorrelation coefficients. The trend of zooplankton biomass shows periodical fluctuation for the period of 63 months with high interrelationships. The seasonal variation has teen obvious with growth phase twice a year, in April and October.

  • PDF

Deploying a Wireless Sensor Network for Oceanography using ZigBee

  • Park, Soo-Hong;Keat, Kok-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.140-145
    • /
    • 2008
  • We recently developed new offshore observation system using USN buoy, widely used to measure the directional properties of ocean wave, seawater temperature, UV light, longitude and latitude of the buoy using GPS module. This paper also documents the development and implementation of a buoy network for acquisition of data of base station with buoys. The major phases of the project include specification of the network, physical construction of network nodes, software development for control of nodes, and testing of network performance. We described some of the practical issues involved in designing, building and deploying a buoy network for oceanographic monitoring. The paper explains some of the design decisions and their consequences, and some of the lessons learned from a first lesson network trial at sea.

A Study on the Integration GIS with Hydrodynamic Model (GIS와 해수유동모델의 연계방안 연구)

  • 김종규;김정현
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.1-6
    • /
    • 2002
  • The integration of Geographic Information Systems (GIS) with the hydrodynamic model was conducted in order to revitalize the use of geographical information and to aid in the understanding of tidal circulation patterns. A 2D finite difference numerical model was used to simulate n tidal circulation in the Suyoung Bay in Busan, Korea. CIS, especially the ArcView S/W is used to input the data of the numerical model, and is also used for the visualization of model outputs on the ground in the loosely coupled method. In this paper, an electronic navigational chart (ENC), which provides more accurate information in the ocean and coastal areas than any other digital information, is used as a base map for this integration. With the help of GIS, the integration can support th understanding of oceanographic information.

Characteristics of Stability and Intensity of Vertical Transfer in the Western Channel of the Korea Strait

  • Chung, Jong Yul
    • 한국해양학회지
    • /
    • v.10 no.2
    • /
    • pp.57-66
    • /
    • 1975
  • Structure of thermocline, characteristics of stability and intensity of vertical transfer have been studied with hourly oceanographic data in each layers on Line 207 from 1968 to 1969. It is found that a typical thermocline is formed at depths of 10 to 50 meters in summer and early autumn and its core is located near depths of 25 meters. The maximum diffusion coefficient of vertical turbulent is found to be 140$\textrm{cm}^2$/sec at the surface layer(i.e., 0-10 meters), while the minimum is 5$\textrm{cm}^2$/sec at depths of 25 meters, consistent with characteristics of stability and structure of thermocline layers. Our computed diffusion coefficient and stability indicate that the mixing hardly takes place below depths of 80 meters during summer and early autumn, but for the rest of the season mixing could move up to the depth of 50 meters. It appears that the Western Channel of the Korea Strait consist of three different water masses during summer and autumn, and for the rest of the season, two kinds are present.

  • PDF