• Title/Summary/Keyword: Ocean environment information

Search Result 613, Processing Time 0.025 seconds

Analysis of Requirements for New Aids-to-Navigation Service - Focusing on Ship Operator

  • Park, Sangwon;Jeong, Min-Ji;Yoo, Yunja
    • Journal of Navigation and Port Research
    • /
    • v.46 no.5
    • /
    • pp.392-399
    • /
    • 2022
  • With digitalization accelerated by the 4th industrial revolution, the marine traffic environment is also expected to change rapidly. The purpose of this study was to derive a new service for Aids to Navigation (AtoN) to respond to a new marine traffic environment and suggest service requirements from the perspective of the ship's operator. For this purpose, a survey of ship operators was conducted and IPA analysis was performed. Marine traffic intelligence and information services and Image-based ocean environment information services were deduced as high-priority services from the perspective of ship operators. Thus, the derived results can serve as basic data for developing new AtoN services and determining policy directions.

Housing Analysis for Ocean Radiation Detection (해양 방사선 탐지를 위한 하우징 분석)

  • Park, Gang-teak;Kim, Jong-Yeol;Jung, Hyun-kyu;Lee, Nam-ho;Hwang, Young-gwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.714-715
    • /
    • 2017
  • Much of the interest in ocean radiation detection has been heightened as a lot of radioactivity has leaked to the ocean due to the accident at the Fukushima nuclear power plant in Japan. In the study, MCNP simulation for radiation detection in the ocean was performed. Unlike in the air, the marine environment must ensure the stability of the sensor from water depth, temperature, pressure, and salinity. In the marine environment, too much radiation is shielded. Therefore, it is an object to select a housing with a low radiation shielding ratio.

  • PDF

Development of Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI)의 개발)

  • Cho, Seong-Ick;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Kang, Gm-Sil;Youn, Heong-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.157-165
    • /
    • 2010
  • In June 2010, Geostationary Ocean Color Imager (GOCI), the world's first ocean color observation satellite will be launched. GOCI is planned for use in real-time monitoring of the ocean environment around Korean Peninsula by daily analysis of ocean environment measurements of chlorophyll concentration, dissolved organic matter, and suspended sediments taken eight times per day for seven years. GOCI primary data will support a fishery information service and red tide forecasting, and ocean climate change research. In this paper, the development background of GOCI, user requirements, GOCI architecture, and the GOCI on-orbit operational concept are explained.

A Study on Realizing the GUI Based Ocean Pollutant Information Simulator I (GUI 기반 해양오염원 정보제공 SIMULAIOR 구현에 관한 연구 I)

  • Rho J. H.;Yoon S. H.;Kim M. H.;Yoon B. S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.3
    • /
    • pp.23-27
    • /
    • 2002
  • Ocean pollution like as oil spill and red tide have occurred considerable and executing clean-up them. Rapid prediction of polluting area is necessary that efficiency clean-up. In this study, develop the program that clean-up worker could easy predict polluted area. This paper is introduced configuration and contents of ODM(oil diffusion modelling) which constructed with GUI(Graphic User Interface) system. ODM is consisted with pre, post and main process, and constructed on window process. So, clean-up worker easy operating program and confirm the result. Studying this program, the distribution of ocean pollutant and phase of ocean movement is shown without difficulty on a computer.

  • PDF

Development of Real-time Oceanographic Information System using Platforms of Aquaculture Farms (양식장 플랫폼을 활용한 실시간 해양환경 정보제공시스템 개발연구)

  • Yang, Joon-Yong;Suh, Young-Sang;Choi, Yong-Kyu;Jung, Kyu-Kui;Jeong, Hee-Dong;Park, Jong-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.47-57
    • /
    • 2007
  • Real-time oceanographic information system was developed using platforms of aquaculture farms to examine causes of mass mortality of hatchery fishes, and to reduce the damage of mass mortality which has been occurred frequently off coast by abnormal change of ocean conditions. The system had the advantages of direct data distribution to fishermen at the farm and instant maintenance of equipments due to easy access to the farms and residents at the farms in comparison with offshore mooring buoy system. To avoid discontinued measurement of the system, repairs caused by malfunction of equipments, bimonthly preventive maintenances and daily monitoring of measured data were systematized. Confidence intervals calculated by a statistical method using accumulated data were applied to data management. Such activities could minimize discontinuance of measurement and keep information more trustful. In addition, the system has various ways of data distribution. Through homepage and e-mail in the internet, information was provided to public. Display units which were connected to equipments at the farm gave the measured data directly to fishermen, which guided them to run their farm scientifically. Finally large display unit was installed at a fish market and showed the measured data at the nearest station with tide and weather information. Proper region for aquaculture and wintering region were studied using temperature data obtained by the system in 2006. The system will contribute to reduce economic damage of coastal fishery and to understand coastal marine environment.

  • PDF

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

Underwater Acoustic Source Localization based on the Probabilistic Estimation of Direction Angle (확률적 방향각 추정에 기반한 수중 음원의 위치 인식 기법)

  • Choi, Jinwoo;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.206-215
    • /
    • 2014
  • Acoustic signal is crucial for the autonomous navigation of underwater vehicles. For this purpose, this paper presents a method of acoustic source localization. The proposed method is based on the probabilistic estimation of time delay of acoustic signals received by two hydrophones. Using Bayesian update process, the proposed method can provide reliable estimation of direction angle of the acoustic source. The acquired direction information is used to estimate the location of the acoustic source. By accumulating direction information from various vehicle locations, the acoustic source localization is achieved using extended Kalman filter. The proposed method can provide a reliable estimation of the direction and location of the acoustic source, even under for a noisy acoustic signal. Experimental results demonstrate the performance of the proposed acoustic source localization method in a real sea environment.

Web MGIS with SVG of Kosrae Costal Waters, Micronesia (SVG를 이용한 마이크로네시아 코스레 주변해역 Web MGIS 구축)

  • Park, Sang-Woo;Kim, Jung-Hyun;Lee, Moon-Ock;Kim, Hyeon-Ju;Kim, Jongkyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.3
    • /
    • pp.485-491
    • /
    • 2014
  • The study of Web MGIS(Marine Geographic Information System) based on the SVG(Scalable Vector Graphics) is mainly performed on effective methodologies which transform real world data to computing world data. Web GUI system has its own target on reliable data service by acquisition of geometric information using HYCOM(HYbrid Coordinate Ocean Model), accurate measurement and graphical visualization. This type of raw data visualization can be built without software tools, yet is incredibly useful for interpreting and communicating data. Even simple visualizations can aid in the interpretation of complex hydrodynamic relationships that are frequently encountered in the marine environment. The Web MGIS provides an easy way for hydrodynamic geoscientists to construct complex visualizations that can be viewed with free software. This study proposes a Web GUI MGIS using FVCOM(Finite Volume Coastal Ocean Model). Finally, we design a Marine Web GUI system of Kosrae Coastal Waters integrating above data models. It must adds more ecological information and the various service item for approach more easily in order to user.

Development of a Wave Monitoring System Using a Marine Radar (항해용 레이더를 이용한 파랑 모니터링 시스템 개발)

  • PARK JUN-SOO;PARK SEUNG-GEUN;KWON SUN-HONG;PARK GUN-IL;CHOI JAE-WOONG;KANG YUN-TAE;HA MUN-KEUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.37-42
    • /
    • 2006
  • In the ocean engineering field, information about the ocean environment is important for planning, design, and operation, especially the wave information. High precision wave data is also important for considering environmental problems, like efficient operation of ships. For this purpose, many methods were considered in the past. However, an on-board directing wave measurement system has not been incorporated. The use of conventional marine radar Plane Position Indicator (PPI) images allows the estimation of wave information on a real-time basis, using both space and time information, regarding the evolution of ocean surface waves. In order to achieve data acquisition, the Radar Scan Converter (RSC) has been developed. Three-dimensional analysis was performed. The comparison of wave information derived from this system, and that of wave buoy, shows that this wave field detecting system can be a useful tool.