• Title/Summary/Keyword: Ocean current prediction

Search Result 122, Processing Time 0.026 seconds

Numerical Prediction of Tidal Current due to the Density and Wind-driven Current in Yeong-il Bay (하구밀도류와 취송류가 영일만 해수유동에 미치는 영향)

  • YOON HAN-SAM;LEE IN-CHEOL;RYU CHEONG-RO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.22-28
    • /
    • 2004
  • This study constructed a 3D real-time numerical model that predicts the water quality and movement characteristics of the inner bay, considering the characteristics of the wind-driven current and density current in estuaries, generated by the river discharge from the Hyeong-san river and oceanic water of the Eastern sea. The numerical model successfully calculated the seawater circulation current of Yeong-il Bay, using the input conditions oj the real-time tidal current, river discharge, and weather conditions during March 2001. This study also observed the wind-driven current and density current in estuaries that are effected by the seawater circulation pattern of the inner bay. We investigated and analyzed each impact factor, and its relationship to the water quality of Yeong-il bay.

Quality Enhancement of MIROS Wave Radar Data at Ieodo Ocean Research Station Using ANN

  • Donghyun Park;Kideok Do;Miyoung Yun;Jin-Yong Jeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.103-114
    • /
    • 2024
  • Remote sensing wave observation data are crucial when analyzing ocean waves, the main external force of coastal disasters. Nevertheless, it has limitations in accuracy when used in low-wind environments. Therefore, this study collected the raw data from MIROS Wave and Current Radar (MWR) and wave radar at the Ieodo Ocean Research Station (IORS) and applied the optimal filter by combining filters provided by MIROS software. The data were validated by a comparison with South Jeju ocean buoy data. The results showed it maintained accuracy for significant wave height, but errors were observed in significant wave periods and extreme waves. Hence, this study used an artificial neural network (ANN) to improve these errors. The ANN was generalized by separating the data into training and test datasets through stratified sampling, and the optimal model structure was derived by adjusting the hyperparameters. The application of ANN effectively improved the accuracy in significant wave periods and high wave conditions. Consequently, this study reproduced past wave data by enhancing the reliability of the MWR, contributing to understanding wave generation and propagation in storm conditions, and improving the accuracy of wave prediction. On the other hand, errors persisted under high wave conditions because of wave shadow effects, necessitating more data collection and future research.

Flow characteristics of Geumo Islands Sea area by numerical model experiments (수치실험을 통한 금오열도 해역의 해수유동 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.2
    • /
    • pp.159-174
    • /
    • 2022
  • Flow prediction was carried out through observational survey and three dimensional multi-layered numerical diagnostic model experiment to clarify the time and spatial structure of tidal current and residual flow dominant in the sea exchange and material circulation of the waters around Geumo Islands in the southern waters of Korea. The horizontal variation of tidal current is so large that it causes asymmetric tidal mixing due to horizontal eddies and the topographical effect creating convergence and dispersion of flow direction and velocity. Due to strong tidal currents flowing northwest-southeast, counterclockwise and clockwise eddies are formed on the left and right sides of the south of Sori Island. These topographical eddies are created by horizontal turbulence and bottom friction causing nonlinear effects. Baroclinic density flows are less than 5 cm/s at coastal area in summer and the entire sea area in winter. The wind driven currents assuming summer and winter seasonal winds are also less than 5 cm/s and the current flow rate is high in winter. Density current in summer and wind driven current in winter have a relatively greater effect on the net residual flows (tidal residual current + density current + density driven current) around Geumo Islands Sea area.

광도만에 있어서 물질수송과정의 수치예측

  • 이인철;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.159-164
    • /
    • 2000
  • In order to clarify the seasonal variation of residual current and material transportation process in Hiroshima Bay, JAPAN, the real-time simulation of residual current and particle tracking by using Euler-Lagrange model were carried out. The calculated tidal current and water temperature and salinity showed good agreement with the observed ones. The residual currents showed the southward flow pattern at the upper layer, and the northward flow pattern at the lower layer. The flow structure of residual current in Hiroshima Bay is an estuarine circulation affected by density flow and wind driven current. The residual current plays an improtant role of material transportation in th bay.

  • PDF

Prediction of Wave Transformation in the Kwangan Beach (광안해역에서의 파랑변형예측)

  • 박정철;김재중;김인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.6-10
    • /
    • 2001
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develope as wave-current equation type to investigate the effect of wave-current interaction. It starts from Berkhoff's(1972) mild slope equation and is transformed to time-dependent hyperbolic type equation by using variational principal. Finally the governing equation is shown as a parabolic type equation by splitting method. This wave-current model was applied to the kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF

Prediction Performance of Ocean Temperature and Salinity in Global Seasonal Forecast System Version 5 (GloSea5) on ARGO Float Data

  • Jieun Wie;Jae-Young Byon;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.327-337
    • /
    • 2024
  • The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.

Proposal for Improvement in Prediction of Marine Propeller Performance Using Vortex Lattice Method (와류격자법에 의한 프로펠러 성능추정 향상을 위한 제안)

  • Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • Current trends in propeller design have led to the need for extremely complex blade shapes, which place great demands on the accuracy of design and analysis methods. This paper presents a new proposal for improving the prediction of propeller performance with a vortex lattice method using the lifting surface theory. The paper presents a review of the theory and a description of the numerical methods employed. For 8 different propellers, the open water characteristics are calculated and compared with experimental data. The results are in good agreement in the region of a high advanced velocity, but there are differences in the other case. We have corrected the parameters for the trailing wake modeling in this paper, and repeated the calculation. The new calculation results are more in agreement with the experimental data.

Accuracy of Short-Term Ocean Prediction and the Effect of Atmosphere-Ocean Coupling on KMA Global Seasonal Forecast System (GloSea5) During the Development of Ocean Stratification (기상청 계절예측시스템(GloSea5)의 해양성층 강화시기 단기 해양예측 정확도 및 대기-해양 접합효과)

  • Jeong, Yeong Yun;Moon, Il-Ju;Chang, Pil-Hun
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.599-615
    • /
    • 2016
  • This study investigates the accuracy of short-term ocean predictions during the development of ocean stratification for the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 5 (GloSea5) as well as the effect of atmosphere-ocean coupling on the predictions through a series of sensitive numerical experiments. Model performance is evaluated using the marine meteorological buoys at seas around the Korean peninsular (KP), Tropical Atmosphere Ocean project (TAO) buoys over the tropical Pacific ocean, and ARGO floats data over the western North Pacific for boreal winter (February) and spring (May). Sensitive experiments are conducted using an ocean-atmosphere coupled model (i.e., GloSea5) and an uncoupled ocean model (Nucleus for European Modelling of the Ocean, NEMO) and their results are compared. The verification results revealed an overall good performance for the SST predictions over the tropical Pacific ocean and near the Korean marginal seas, in which the Root Mean Square Errors (RMSE) were $0.31{\sim}0.45^{\circ}C$ and $0.74{\sim}1.11^{\circ}C$ respectively, except oceanic front regions with large spatial and temporal SST variations (the maximum error reached up to $3^{\circ}C$). The sensitive numerical experiments showed that GloSea5 outperformed NEMO over the tropical Pacific in terms of bias and RMSE analysis, while NEMO outperformed GloSea5 near the KP regions. These results suggest that the atmosphere-ocean coupling substantially influences the short-term ocean forecast over the tropical Pacific, while other factors such as atmospheric forcing and the accuracy of simulated local current are more important than the coupling effect for the KP regions being far from tropics during the development of ocean stratification.

Numerical and experimental investigation on the performance of three newly designed 100 kW-class tidal current turbines

  • Song, Mu-Seok;Kim, Moon-Chan;Do, In-Rok;Rhee, Shin-Hyung;Lee, Ju-Hyun;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.241-255
    • /
    • 2012
  • Three types of 100 kW-class tidal stream turbines are proposed and their performance is studied both numerically and experimentally. Following a wind turbine design procedure, a base blade is derived and two additional blades are newly designed focusing more on efficiency and cavitation. For the three designed turbines, a CFD is performed by using FLUENT. The calculations predict that the newly designed turbines perform better than the base turbine and the tip vortex can be reduced with additional efficiency increase by adopting a tip rake. The performance of the turbines is tested in a towing tank with 700 mm models. The scale problem is carefully investigated and the measurements are compared with the CFD results. All the prediction from the CFD is supported by the model experiment with some quantitative discrepancy. The maximum efficiencies are 0.49 (CFD) and 0.45 (experiment) at TSR 5.17 for the turbine with a tip rake.

Path Prediction and Suggestion of Efficient Collection Points for Marine Plastic Debris Based on Betweenness Centrality Analysis (매개 중심성을 이용한 해양 플라스틱 폐기물의 경로 예측 및 효율적인 수거지점 제안)

  • Jeon, Yeon Seon;Hong, Min Ji;Park, Moo Kyu;Choi, Yong-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.426-431
    • /
    • 2015
  • Korea severely suffers from plastic-induced ocean pollution, but only few studies predicted the trajectory of marine plastic debris and provided their collection method. This study used Ocean Surface CURrent Simulator (OSCURS) of National Oceanic and Atmospheric Administration (NOAA) in order to predict the trajectories of marine plastic debris flowing into the East Sea and Yellow Sea for each season during 2004 to 2013. Results suggest that efficient collection hubs through the high betweenness centrality index. Most hubs were located in the seashores regardless of season, suggesting the seashore of Uljin for the East Sea and the seashore between Saemangeum and Shinan for the Yellow Sea as the most efficient hubs.