• Title/Summary/Keyword: Ocean color front

Search Result 13, Processing Time 0.024 seconds

Spatial distribution of pigment concentration around the East Korean Warm Current region derived from Satellite data

  • Kim, Sang-Woo;Kim, Young-Seup;Yoon, Hong-Joo;Saitoh, Sei-ich
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.655-655
    • /
    • 2002
  • Spatial distribution of phytoplankton pigment concentration (PPC) and sea surface temperature (SST) around the East Korean Warm Current (EKWC) was described, using both ocean color images and advanced very high resolution radiometer (AVHRR) images. Water mass in this region can be classified into five categories in the horizontal profile of PPC and SST, nLw(normalized water-leaving radiance) images: (1) coastal cold water region associated with concentrations of dissolved organic material or yellow colored substances and suspended sediments, (2) cold water region of thermal frontal occurred by a combination of phytoplankton absorption and suspended materials, (3) warm water overlay region by the phytoplankton absorption than the suspended materials; (4) warm water region occurred by the low phytoplankton absorption, and (5) offshore region occurred by the high phytoplankton absorption. In particular, the highest PPC area appeared in the ocean color and SST images with a band shaped distribution of the thermal front and ocean color front region, which is located the coastal cold waters along western thermal front of the warm streamer of the EKWC.

  • PDF

The Chlorophyll Concentration in the Southwestern East Sea Observed by Coastal Zone Color Scanner (CZCS)

  • Lee Dong-Kyu;Son Seung-Hyun
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 2000
  • Monthly mean chlorophyll concentration in the East Sea was estimated from the ocean color observed by the Coastal Zone Color Scanner (CZCS) on Nimbus-7 satellite which had performed various remote sensing missions from 1979 to 1986. The areas of high chlorophyll concentration were found in the sea between Siberia coast and Sakhalin Island, in the Donghan Bay and in the Ulleung Basin. In the southwestern East Sea, especially in the area near Ulleung Island, the yearly maximum chlorophyll concentration occurred in December. The chlorophyll concentration in Ulleung Basin in December was about two times higher than during spring bloom in April. The early winter bloom occurred in the warm side of the front that was formed between warm water from the East China Sea and nutrition rich cold water from the northern East Sea.

  • PDF

Sequential detection simulation of red-tide evolution for geostationary ocean color instrument with realistic optical characteristics

  • Jeong, Soo-Min;Jeong, Yu-Kyeong;Ryu, Dong-Ok;Kim, Seong-Hui;Cho, Seong-Ick;Hong, Jin-Suk;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.49.3-49.3
    • /
    • 2009
  • Geostationary Ocean Colour Imager (GOCI) is the first ocean color instrument that will be operating in a geostationary orbit from 2010. GOCI will provide the crucial information of ocean environment around the Korean peninsula in high spatial and temporal resolutions at eight visible bands. We report an on-going development of imaging and radiometric performance prediction model for GOCI with realistic data for reflectance, transmittance, absorption, wave-front error and scattering properties for its optical elements. For performance simulation, Monte Carlo based ray tracing technique was used along the optical path starting from the Sun to the final detector plane for a fixed solar zenith angle. This was then followed by simulation of red-tide evolution detection and their radiance estimation, following the in-orbit operational sequence. The simulation results proves the GOCI flight model is capable of detecting both image and radiance originated from the key ocean phenomena including red tide. The model details and computational process are discussed with implications to other earth observation instruments.

  • PDF

Response of Filefish to the Colored Lights (색광에 대한 쥐치의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.1
    • /
    • pp.7-11
    • /
    • 1981
  • The author carried out an experiment to find out the responsing patterns of filefish, Stepha nolepis cirrhifer (Temminck et Schlegel) to the color lights. The experimental tank (360LX50WX55H cm) was set up in a dark room. Six Longitudinal sections each being 60 em intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 em level. Light bulbs of 20W were placed at the both ends of the tank to be projected the light horizontally into the tank. Two different colored filters were selected in combination from four' colors-red, blue, yellow, and white, and were placed in front of the light bulbs to make\ulcorner different light of color. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fish were acclimatized in the dark for 40 minutes prior to employ in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in every 30 seconds, and the mean of the number of fish in each section was given as the gathering rate of the fish. The results obtained are as follows: 1. Color of light, to which the fish gathered abundantly was found in the named order of blue, white, green, and red. 2. The differences of gathering rate upon arbitary combined two color lights were shown significant, and the differences increased remarkably in accordance with the lapse of illuminating period.

  • PDF

Interannual Variability of Summer Chlorophyll in the Southern Ocean: ENSO Effects (남극해 여름 클로로필 경년 변동: 엔소의 영향)

  • Kim, Yong Sun;Jang, Chan Joo;Son, Young-Baek
    • Ocean and Polar Research
    • /
    • v.37 no.2
    • /
    • pp.149-159
    • /
    • 2015
  • The Southern Ocean (SO) plays a primary role in global climate by storing and transporting anthropogenic carbon dioxide through the meridional overturning circulation and the biological pumping process. In this study, we aim to investigate interannual variability of summer chlorophyll concentration in the SO and its relation with the El $Ni{\tilde{n}}o$ Southern Oscillation (ENSO), using satellite ocean color data covering 16 years from 1997 to 2012. During El $Ni{\tilde{n}}o$ periods, chlorophyll concentration tends to increase in the subtropics (north of the subantarctic front). This chlorophyll increase is likely linked to El $Ni{\tilde{n}}o$-induced surface cooling that increases nutrient supply through enhanced vertical mixing in the subtropics. On the other hand, the subpolar gyres show localized chlorophyll changes in response to the ENSO. The localized response seems to be primarily attributed to changes in sea-ice concentrations. Our findings suggest that ENSO contributes interannual variability of chlorophyll in the SO through different mechanisms depending on regions.

Spatial Distribution of Pigment Concentration Around the East Korean Warm Current Region Derived from Satellite Data - Satellite Observation in May 1980 - (위성원격탐사에 의한 동한난류 주변 해역의 색소농도 공간적 분포 -1980년 5월 관측을 중심으로 -)

  • Kim Sang Woo;Saitoh Sei-ich;Kim Dong Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.265-272
    • /
    • 2002
  • Spatial distribution of Phytoplankton Pigment Concentration (PPC) and Sea Surface Temperature (SST) around the East Korean Warm Current (EKWC) was described, using both Coastal Zone Color Scanner (CZCS) images and Advanced Very High Resolution Radiometer (AVHRR) images in May, 1980. Water mass in this region can be classified into five categories in the horizontal profile of PPC and SST, nLw (normalized water-leaving radiance) images: (1) coastal cold water region associated with concentrations of dissolved organic material or yellow colored substances and suspended sediments, (2) cold water region of thermal frontal occurred by a combination of phytoplankton absorption and suspended materials, (3) warm water overlay region by the phytoplankton absorption than the suspended materials; (4) warm water region occurred by the low phytoplankton absorption, and (5) offshore region occurred by the high phytoplankton absorption. In particular, the highest PPC (>2.0 mg/m^3) area appeared in the CZCS and AVHRR images with a band shaped distribution of the thermal front and ocean color front region, which is located the coastal cold waters alonB western thermal front of the warm streamer of the EKWC. In this region, the highest PPC occurred by a combination of the high absorption of the phytoplankton (443 nm) and highest reflectance of suspended materials (550 nm). Another high PPC ($\simeq$$6\;mg/m^3$) appeared in the warm water overlay region inside warm streamer. High phytoplankton pigment concentration of this region was corresponding to the short wavelength of 443 nm, which represented phytoplankton absorption of the CZCS image.

Response of Striped Puffer , Fugu xanthopterus to the Colored Lights (색광에 대한 까치복의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.2
    • /
    • pp.78-85
    • /
    • 1994
  • The author carried out an experiment to find out the response of Striped puffer. Fugu xanthoperus (Temminck et Schlegel) to the color lights. The experimental tank (300L$\times$50W$\times$50Hcm) was set up in a dark room. Six longitudinal sections with 60cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and the were placed in front of the light bulbs to make different colors of light. Light intensity was controlled by use of auxiliary filiters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 60 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in order of blue, yellow, white and red in the daytime, and blue, white, yellow and red at night. The difference of the average distribution on two different colors of light was 13.12%(4.10-26.55%), and the difference in the daytime(14.79%) was larger than at night (11.45%). Constantly the gathering rate of fish on illumination period was fluctuated with instability. As the gathering rate of fish on illumination period was fluctuated with instability. As the gathering rate on one color of light increased, the gathering rate on the other color of light decreased. The difference of the gathering rate on two different colors of light was comparatively distinct and the difference in the daytime was larger than at night.

  • PDF

A Recurring Eddy off the Korean Northest Coast Captured on Satellite Ocean Color and Sea Surface Temperature Imagery (위성의 해색 영상과 해수면온도 영상을 활용한 재발생 와동류에 관한 연구)

  • ;B.G.Mitchell
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 1999
  • A recurring eddy which located at the terminal end of the Korean East Warm Current was captured on ocean color and sea surface temperature imagery from satellite in spring and autumn. During late April, 1997 thermal infrared imagery from the NOAA AVHRR sensor and ocean color data from the Japanese ADEOS-I OCTS sensor, revealed this feature. The cold core had elevated chlorophyll concentrations, based on OCTS estimates, of greater than 3 mg/m$^3$ while the warmer surrounding waters had chlorophyll concentrations of 1 mg/m$^3$ or less. The elevated cholophyll accociated with this eddy has not been previously described. The eddy is also evident in SST images from autumn, but the SST in the core is warmer than in spring, and the warm jet flowing to the west of the eddy is also warmer is autumn compared to spring. A reccurring eddy and the high chlorophyll_a concentration area which surround around the eddy show on NOAA and SeaWiFS images in March 2, 1998. The eddy forms at the northern extent of the Korean East Warm Current as those waters collide with the cold, south-flowing Liman Current over a topographic shelf about 1500 m deep. This region of the eddy formation appears to have a strong connection with the dynamics of the western part of the polar front eddy field that dominates surface mesoscale structure in the central East (Japan) Sea. Interaction of the eddy with ARGOW tracked drifters, and evidence for its persistence are discussed.

Response of Rock Trout to the Colored Lights (색광에 대한 쥐노래미의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.6-10
    • /
    • 1984
  • The author carried out an experiment to find out the response of rock trout, Hexagrammos otakii (Jordan et starks) to the color lights. The experimental tank (360L$\times$50W$\times$55H cm) was set up in a dark room. Six longitudinal sections with 60cm intervals are marked in the tank to observe the loction of the fish. Water depth in the tank was kept 50cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were 3employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of white, yellow, red and blue in day time, and red, yellow, blue and white at night time. The gathering rate of fish on illumination period was small and comparatively fluctuated with stability. The difference of the gathering rates on two different colors of light was great.

  • PDF

Response of Cat Shark to the Colored Lights (색광에 대한 두툽상어의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.12-16
    • /
    • 1983
  • The author carried out an experiment to find out the response of cat shark, Scyliorhinus torazame(Tanaka) to the colored lights. The experimental thank (360L$\times$50W$\times$55H cm) was set up in a dark room. Six longitudinal sections with 60cm intervals are marked in the tank to observe th location of the fish. Water depth in the tank was kept 50cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The favorite color of the fish was found in the order of yellow, white, blue and red in day time, and red, blue, white and yellow at night time. The variation of the gathering rate on illumination time was very little and showed more stability in day time than at night time. The differences of the gathering rates to two selected colors out of the four colors were greater regardless of illumination time.

  • PDF