• Title/Summary/Keyword: Ocean circulation

Search Result 523, Processing Time 0.021 seconds

A Second-Order Particle Tracking Method

  • Lee, Seok;Lie, Heung-Jae;Song, Kyu-Min;Lim, Chong-Jeanne
    • Ocean Science Journal
    • /
    • v.40 no.4
    • /
    • pp.201-208
    • /
    • 2005
  • An accurate particle tracking method for a finite difference method model is developed using a constant acceleration method. Being assumed constant temporal and spatial gradients, the new method permits temporal-spatial variability of particle velocity. Test results in a solid rotating flow show that the new method has second-order accuracy. The performance of the new method is compared with that of other methods; the first-order Euler forward method, and the second-order Euler predictor-corrector method. The new method is the most efficient method among the three. It is more accurate and efficient than the other two.

A Comparison of Two Vertical-Mixing Schemes on the Simulation of the Mixed Layer Depth and Upper Ocean Temperature in an Ocean General Circulation Model (두 가지 연직혼합방안에 따른 해양대순환모형 혼합층깊이 및 상층수온 모사 민감도 비교)

  • Yi, Dong-Won;Jang, Chan Joo;Yeh, Sang-Wook;Park, Taewook;Shin, Ho-Jeong;Kim, Donghoon;Kug, Jong-Seong
    • Ocean and Polar Research
    • /
    • v.35 no.3
    • /
    • pp.249-258
    • /
    • 2013
  • Vertical and horizontal mixing processes in the ocean mixed layer determine sea surface temperature and temperature variability. Accordingly, simulating these processes properly is crucial in order to obtain more accurate climate simulations and more reliable future projections using an ocean general circulation model (OGCM). In this study, by using Modular Ocean Model version 4 (MOM4) developed by Geophysical Fluid Dynamics Laboratory, the upper ocean temperature and mixed layer depth were simulated with two different vertical mixing schemes that are most widely used and then compared. The resultant differences were analyzed to understand the underlying mechanism, especially in the Tropical Pacific Ocean where the differences appeared to be the greatest. One of the schemes was the so-called KPP scheme that uses K-Profile parameterization with nonlocal vertical mixing and the other was the N scheme that was rather recently developed based on a second-order turbulence closure. In the equatorial Pacific, the N scheme simulates the mixed layer at a deeper level than the KPP scheme. One of the reasons is that the total vertical diffusivity coefficient simulated with the N scheme is ten times larger, at maximum, in the surface layer compared to the KPP scheme. Another reason is that the zonal current simulated with the N scheme peaks at a deeper ocean level than the KPP scheme, which indicates that the vertical shear was simulated on a larger scale by the N scheme and it enhanced the mixed layer depth. It is notable that while the N scheme simulates a deeper mixed layer in the equatorial Pacific compared to the KPP scheme, the sea surface temperature (SST) simulated with the N scheme was cooler in the central Pacific and warmer in the eastern Pacific. We postulated that the reason for this is that in the central Pacific atmospheric forcing plays an important role in determining SST and so does a strong upwelling in the eastern Pacific. In conclusion, what determines SST is crucial in interpreting the relationship between SST and mixed layer depth.

A Conceptual Two-Layer Model of Thermohaline Circulation in a Pie-Shaped $\beta$-Plane Basin

  • Park, Young-Gyu
    • Journal of the korean society of oceanography
    • /
    • v.38 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • The three dimensional structure of thermohaline circulation in a D-plane is investigated using a conceptual two layer model and a scaling argument. In this simple model, the water mass formation region is excluded. The upper layer represents the oceans above the main thermocline. The lower layer represents the deep ocean below the thermocline and is much thicker than the upper layer. In each layer, geostrophy and the linear vorticity balance are assumed. The cross interfacial velocity that compensates for the deep water mass formation balances downward heat diffusion from the top. From the above relations, we can determine the thickness of the upper layer, which is the same as thermocline depth. The results we get is basically the same as that we get for an f-plane ocean or the classical thermocline theory. Mass budget using the velocity scales from the scaling argument shows that western boundary and interior transports are much larger than the net meridional transport. Therefore in the thermohaline circulation, horizontal circulation is much stronger than the vertical circulation occuring on a meridional plane.

Validation of Ocean General Circulation Model (FMS-MOM4) in Relation with Climatological and Argo Data

  • Chang, You-Soon;Cho, Chang-Woo;Youn, Yong-Hoon;Seo, Jang-Won
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.545-555
    • /
    • 2007
  • Ocean general circulation model developed by GFDL on the basis of MOM4 of FMS are examined and evaluated in order to elucidate the global ocean status. The model employs a tripolar grid system to resolve the Arctic Ocean without polar filtering. The meridional resolution gradually increases from $1/3^{\circ}$ at the equator to $1^{\circ}$ at $30^{\circ}N(S)$. Other horizontal grids have the constant $1^{\circ}$ and vertical grids with 50 levels. The ocean is also coupled to the GFDL sea ice model. It considers tidal effects along with fresh water and chlorophyll concentration. This model is integrated for a 100 year duration with 96 cpu forced by German OMIP and CORE dataset. Levitus, WOA01 climatology, serial CTD observations, WOCE and Argo data are all used for model validation. General features of the world ocean circulation are well simulated except for the western boundary and coastal region where strong advection or fresh water flux are dominant. However, we can find that information concerning chlorophyll and sea ice, newly applied to MOM4 as surface boundary condition, can be used to reduce a model bias near the equatorial and North Pacific ocean.

Development of High-Resolution Pacific Ocean Circulation Model

  • You Sung-Hyup;Yoon Jong-Hwan;Seo Jang-Won;Youn Yong-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.129-132
    • /
    • 2006
  • A Pacific Ocean circulation model based on the RIAM Ocean Model (RIAMOM) with $1/6^{\circ}C\;and\;1/12^{\circ}C$ horizontal resolution successfully reproduced the peculiar circulation structures of the Pacific Ocean. The volume transports of model agree very well with the results of observations in the northwestern Pacific Ocean. Also our model successfully reproduced the observed structures of the northeastward Ryukyu Current with a subsurface core at $500{\sim}600m$. A Possible mechanism for the subsurface current core of the Ryukyu Current is proposed focusing on the blocking effect of the Ryukyu Island Chain.

  • PDF

Numerical Study on the Role of Sea-ice Using Ocean General Circulation Model (해양대순환모형을 이용한 해빙의 역할에 관한 수치실험 연구)

  • Lee, Jin-Ah;Ahn, Joong-Bae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.225-233
    • /
    • 2001
  • In order to find out the role of sea-ice in the climate system, a thermodynamic sea-ice model has been developed and included in the ocean general circulation model, MOM2, for the construction of OGCM/sea-ice coupled model in this study. By using the model developed, seasonal mean sea-ice distribution has been simulated, first of all. The role of sea-ice in the sense of large scale ocean circulation has been studied by comparing the results of OGCM/sea-ice coupled model experiment with OGCM-standalone experiment. At the same time, the coupled model has been verified by comparing and analysing the results of the other models and observation. The coupled model has reasonably simulated the overall seasonal distribution of sea-ice in the high latitudes of both hemispheres. In the comparative analysis between the OGCM/sea-ice coupled and OGCM-standalone experiments, the sea-ice is playing important roles on maintaining not only the distributions of temperature and salinity in high latitudes of both hemispheres, but also the meridional ocean circulation associated with south ocean cell, southern hemisphere cell and zonal ocean circulation such as a circum-polar current.

  • PDF

Implication of the Change in Overturning Circulation to the LGM CO2 Budget

  • Kim, Seong-Joong;Lee, Bang-Yong;Yoon, Ho-Il;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.501-506
    • /
    • 2004
  • The observational proxy estimates suggest that the North Atlantic overturning stream function associated with the North Atlantic Deep Water (NADW) production and outflow was substantially weaker during the last glacial maximum (LGM) than that observed under present conditions. The impact of the changes in overturning circulation on the glacial carbon budget is investigated using a box model. The carbon box model reveals that the atmospheric $CO_2$ concentration is more sensitive to change in the overturning circulation of the North Atlantic than that of the Southern Ocean, especially when North Atlantic overturning becomes weaker. For example, when the strength of the North Atlantic overturning circulation is halved, the atmospheric $CO_2$ concentration is reduced by 50ppm of that associated with the accumulation of $CO_2$ in the deep ocean. This result implies that a weaker North Atlantic overturning circulation may play an important role in the lowering of LGM atmospheric $CO_2$ concentration.

A Review of Ocean Circulation of the East/Japan Sea (한국 동해 해수순환의 개략적 고찰)

  • 김종규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.103-107
    • /
    • 2001
  • The major studies of an ocean circulation of the East/Japan Sea related to evaluate the feasibility and utilization of deep ocean water are reviewed. The major feature of surface current system of the East/Japan Sea is an inflow of the Tsushima Warm Current through the Korea/Tsushima Strait and the outflow through the Tsugaru and Soya Straits. The Tsushima Warm Current has been known to split into two or three branches in the southern region of the East/Japan Sea. In the cold water region of the East/Japan Sea, the North Korean Cold Current turns to the east near 39$^{\circ}$N after meeting the East Korean Warm Current, then flows eastward. The degree of penetration depends on the strength of the positive wind stress curl, according to the ventilation theory. Various current meter moorings indicate strong and oscillatory deep currents in various parts of the basin. According to some numerical experiments, these currents may be induced by pressure-topography or eddy-topography interaction. However, more investigations are needed to explain clearly the presence of these strong bottom currents. This study concludes the importance of topographical coupling, isopycnal outcropping, different wind forcing and the branching of the Tsushima Warm Current on the circulation of the East/Japan Sea.

  • PDF

Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica (해양-빙붕 상호작용을 고려한 남극 테라노바 만에서 수괴 형성과 순환의 수치 시뮬레이션)

  • Taekyun, Kim;Emilia Kyung, Jin;Ji Sung, Na;Choon Ki, Lee;Won Sang, Lee;Jae-Hong, Moon
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.269-285
    • /
    • 2022
  • The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.

Three-dimension리 Circulation of MGIS based Seomjin River Estuary (MGIS 기반 섬진강 하구역 3차원 해수유동)

  • Park, Sang-Woo;Kim, Jong-Kyu;Lee, Moon-Ock
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.431-434
    • /
    • 2006
  • This study reviews the properties of coastal ocean and Seomjin River estuary spaces then define some MGIS(Marine Geographic Information System) related terminologies for clarifying the scope of MGIS boundaries. Therefore, we show the three-dimensional circulation of MGIS-based Seomjin River Estuary integrating three-dimensional POM model and observed data.

  • PDF