• 제목/요약/키워드: Ocean Thermal Energy Conversion (OTEC)

검색결과 46건 처리시간 0.024초

Dynamic Model for Ocean Thermal Energy Conversion Plant with Working Fluid of Binary Mixtures

  • Nakamura, Masatoshi;Zhang, Yong;Bai, Ou;Ikegami, Yasuyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2304-2308
    • /
    • 2003
  • Ocean thermal energy conversion (OTEC) is an effective method of power generation, which has a small impact on the environment and can be utilized semi-permanently. This paper describes a dynamic model for a pilot OTEC plant built by the Institute of Ocean Energy, Saga University, Japan. This plant is based on Uehara cycle, in which binary mixtures of ammonia and water is used as the working fluid. Some simulation results attained by this model and the analysis of the results are presented. The developed computer simulation can be used to actual practice effectively, such as stable control in a steady operation, optimal determination of the plant specifications for a higher thermal efficiency and evaluation of the economic prospects and off-line training for the operators of OTEC plant.

  • PDF

발전소 복수기 배열회수 해양온도차 발전설비 적용타당성 검토 (Feasibility Study on Modified OTEC (Ocean Thermal Energy Conversion) by Plant Condenser Heat Recovery)

  • 정훈;김경열;허균영
    • 신재생에너지
    • /
    • 제6권3호
    • /
    • pp.22-29
    • /
    • 2010
  • The concept of Ocean Thermal Energy Conversion (OTEC) is simple and various types of OTEC have been proposed and tried. However the location of OTEC is limited because OTEC requires $20^{\circ}C$ of temperature difference as a minimum, so most of OTEC plants were constructed and experimented in tropical oceans. To solve this we proposed the modified OTEC which uses condenser discharged thermal energy of existing fossil or nuclear power plants. We call this system CTEC (Condenser Thermal Energy Conversion) as this system directly uses $32^{\circ}C$ partially saturated steam in condenser instead of $20{\sim}25^{\circ}C$ surface sea water as heat source. Increased temperature difference can improve thermal efficiency of Rankine cycle, but CTEC should be located near existing plant condenser and the length of cold water pipe between CTEC and deep cold sea water also increase. So friction loss also increases. Calculated result shows the change of efficiency, pumping power, net power and other parameters of modeled 7.9 MW CTEC at given condition. The calculated efficiency of CTEC is little larger than that of typical OTEC as expected. By proper location and optimization, CTEC could be considered another competitive renewable energy system.

Experimental Study on Combined Ocean Thermal Energy Conversion with Waste Heat of Power Plant

  • Jung, Hoon;Jo, Jongyoung;Chang, Junsung;Lee, Sanghyup
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.215-222
    • /
    • 2019
  • This work is experimental study of 10 kW specialized Combined Ocean Thermal Energy Conversion. We propose a C-OTEC technology that directly uses exhaust thermal energy from power station condensers to heat the working fluid (R134a), and tests the feasibility of such power station by designing, manufacturing, installing, and operating a 10 kW-pilot facility. Power generation status was monitored by using exhaust thermal energy from an existing power plant located on the east coast of the Korean peninsula, heat exchange with 300 kW of heat capacity, and a turbine, which can exceed enthalpy efficiency of 45%. Output of 8.5 kW at efficiency of 3.5% was monitored when the condenser temperature and seawater temperature are $29^{\circ}C$ and $7.5^{\circ}C$, respectively. The evaluation of the impact of large-capacity C-OTEC technology on power station confirmed the increased value of the technology on existing power generating equipment by improving output value and reducing hot waste water. Through the research result, the technical possibility of C-OTEC has been confirmed, and it is being conducted at 200 kW-class to gain economic feasibility. Based on the results, authors present an empirical study result on the 200 kW C-OTEC design and review the impact on power plant.

태양열 이용 해양온도차발전시스템의 성능 예측 (Performance Investigation of Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) in Korea)

  • ;이근식
    • 대한기계학회논문집B
    • /
    • 제37권1호
    • /
    • pp.43-49
    • /
    • 2013
  • 전력을 생산하기 위해 해양온도차발전을 이용하는 것은 재생에너지를 이용하고 환경을 보호하는 한 가지 방법이다. 본 연구에서는 울산지역의 기후조건이 태양열 이용 해양온도차발전(SH-OTEC)에 미치는 영향을 조사하기 위하여 시뮬레이션을 수행하였다. 태양열 에너지는 제 2 의 열원으로 사용되었다. SH-OTEC 시스템에 사용할 가장 적합한 작동유체를 선정하기 위하여 여러 작동유체를 수치모사하였다. 해석결과, R152A 가 가장 적합한 작동유체로 나타났으며, R600 와 R600A 가 각각 그 다음 순으로 나타났다. 집열판 출구온도를 $20^{\circ}C$ 증가하였을 때 집열판의 유효면적은 월평균 태양에너지 게인(gain)의 변화로 인하여 $50m^2$ 에서 $97m^2$ 으로 요동함을 볼 수 있었다. 2-4%의 전형적인 해양온도차발전의 효율은 태양열을 이용함으로써 연평균 효율은 6.23%까지 증가하였다.

발전 및 해수담수화를 위한 태양열-해양온도차 복합 시스템에 대한 연구 (A Study on the Solar-OTEC Convergence System for Power Generation and Seawater Desalination)

  • 박성식;김우중;김용환;전용한;현창해;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.73-81
    • /
    • 2014
  • Ocean thermal energy conversion(OTEC) is a power generation method that utilizes temperature difference between the warm surface seawater and cold deep sea water of ocean. As potential sources of clean-energy supply, Ocean thermal energy conversion(OTEC) power plants' viability has been investigated. Therefore, this paper evaluated the thermodynamic performance of solar-OTEC convergence system for the production with electric power and desalinated water. The comparison analysis of solar-OTEC convergence system performance was carried out as the fluid temperature, saturated temperature difference and pressure of flash evaporator under equivalent conditions. As a results, maximum system efficiency, electric power and fresh water output show at 40, 10, 2.5 kPa of the flash evaporator pressure, respectively. And their respective enhancement ratios were approximately 6.1, 18, 8.6 times higher than that of the base open OTEC system. Also, performance of solar-OTEC system is the highest in the flash evaporator pressure of 10 kPa.

1MW OTEC 구조물의 운동 응답에 대한 수치 및 모형시험 연구 (Numerical and Experimental Study on Motion Response of 1MW OTEC Platform)

  • 권용주;남보우;김남우;정동호;홍사영;김현주
    • 한국해양공학회지
    • /
    • 제31권2호
    • /
    • pp.81-90
    • /
    • 2017
  • The 1MW OTEC (Ocean Thermal Energy Conversion) platform was designed for application in equatorial seas. In this study, the OTEC platform was investigated using numerical and experimental methods. An octagon-shaped OTEC platform was investigated using the Ocean Engineering Basin of KRISO. These experiments included various tests of regular waves, irregular waves and irregular waves with current (wave+current). The responses of the platform in regular waves showed good agreement between the numerical and experimental results, including the motion RAO, wave run up, and mean drift force. The peak period of heave and pitch motions were observed around 0.5 rad/s, and the effect of the total reflection was found under short wave conditions. The standard deviation (STD) of the platform motion was checked in irregular waves of equatorial and Hawaiian seas. The STD of the pitch was less than $4^{\circ}$ different from the operability requirement under equatorial conditions and the surge STD of the wave frequency showed good agreement between the numerical and experimental results. The STD values of the surge and pitch were increased 66.6% and 92.8% by the current effects in irregular waves, but the pitch STD was less than $4^{\circ}$ under equatorial conditions. This study showed that the STD of the surge was affected by spring effects. Thus, the watch circle of the platform and tension of the mooring lines must be evaluated for a specific design in the future.

폐열 이용 폐쇄형 해양온도차발전 사이클의 성능 (Performance Analysis of Closed-type OTEC Cycle using Waste Heat)

  • 이호생;정동호;홍석원;김현주
    • 한국해양공학회지
    • /
    • 제25권1호
    • /
    • pp.80-84
    • /
    • 2011
  • The cycle performance of closed ocean thermal energy conversion (OTEC) system with 50 kW gross power was evaluated to obtain the basic data for the optimal design of OTEC using waste heat such as solar power, discharged heat from condenser of power plant. The basic thermodynamic model for OTEC is Rankine cycle, and the surface seawater and deep seawater were used for the heat source of evaporator and condenser, respectively. The cycle performance such as efficiency, heat exchanger capacity, etc. was analyzed on the variation of temperature increase by waste heat. The cycle efficiency increased and necessary capacity of evaporator and condenser decreased under 50kW gross power with respect to the temperature increase of working fluid. Also, when the temperature increase is about $13.5^{\circ}C$, the heat which can be used is generated. By generator with 0.9 effectiveness under the simulated condition, the cycle efficiency was improved approximately 3.0% comparing with the basic cycle.

A study of internal wave influence on OTEC systems

  • Shi, Shan;Kurup, Nishu V.;Halkyard, John;Jiang, Lei
    • Ocean Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.309-325
    • /
    • 2013
  • Ocean Thermal Energy Conversion (OTEC) systems utilize the temperature difference between the surface water and deep ocean water to generate electrical energy. In addition to ocean surface waves, wind and current, in certain locations like the Andaman Sea, Sulu Sea and the South China Sea the presence of strong internal waves may become a concern in floating OTEC system design. The current paper focuses on studying the dependence of the CWP hydrodynamic drag on relative velocity of the flow around the pipe, the effect of drag amplification due to vortex induced vibrations and the influence of internal waves on the floating semi and the cold water pipe integrated OTEC system. Two CWP sizes are modeled; the 4m diameter pipe represents a small scale prototype and the 10m diameter pipe represents a full commercial size CWP. are considered in the study.

R32를 이용한 100kW급 해양온도차발전용 반경류터빈의 설계 (Design of a 100kW-class radial inflow turbine for ocean thermal energy conversion using R32)

  • 김도엽;김유택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1101-1105
    • /
    • 2014
  • 해양온도차발전은 해양의 따뜻한 표층수와 차가운 심층수의 온도차를 발전에 이용하는 전도유망한 기술이다. 지속가능한 온도차를 이용하여 온실가스감축기술로서 활용할 수 있다는 장점을 가지는 반면, 시스템의 효율이 낮다는 단점을 가진다. 해양온도차발전의 낮은 시스템 효율을 개선하기 위해서는 성능이 우수한 터빈의 설계 및 개발기술의 확보가 필요하다. 이에 따라 본 연구에서는 R32를 이용한 100kW급 해양온도차발전용 반경류터빈을 설계하였으며, CFD 해석을 통해 설계한 터빈의 성능을 검증하였다. CFD 해석결과를 참고하여 설계한 반경류터빈의 형상을 수정하였으며 이러한 과정을 반복하여 설계요구조건에 적합한 해양온도차발전용 반경류터빈의 최종 형상을 도출하였다.

발전소 온배수를 이용한 1MW급 폐쇄형 해양온도차발전 성능해석 (Analysis of 1MW Closed OTEC Cycle Using Thermal Effluent and Waste Heat)

  • 김현주;이호생;정동호;문덕수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.470-476
    • /
    • 2010
  • 발전소 온배수 및 폐열을 이용한 1 MW급 폐쇄형 해양온도차발전 사이클에 대한 성능을 비교 분석하였다. 폐쇄형 해양온도차발전 사이클에 대한 열역학적 모델은 랭킨 사이클이고, 기화기 증발 열원으로 발전소 온배수를 이용하여 사이클 효율, 기화기 및 응축기 열량 등 사이클 성능을 비교 분석하였다. 발전소 온배수 온도가 증가함에 따라 기화기 내 증발 포화압력은 상승하게 되고 그로 인해 사이클 효율은 증가하였고, 총 출력 1 MW에 필요한 기화기 및 응축기 용량은 감소하였다. 따라서 발전소 온배수는 폐쇄형 해양온도차발전에서 주요한 열원으로 사용될 수 있음을 알 수 있었다. 또한, 주위 이용 가능한 폐열이 있을 때 기화기 출구 작동유체와 열교환시켜 터빈으로 유입되는 작동유체의 온도를 상승시킨다면 사이클 효율은 크게 증가할 것이다.