• 제목/요약/키워드: Ocean Satellite

검색결과 1,085건 처리시간 0.031초

A Modulation Transfer Function Compensation for the Geostationary Ocean Color Imager (GOCI) Based on the Wiener Filter

  • Oh, Eunsong;Ahn, Ki-Beom;Cho, Seongick;Ryu, Joo-Hyung
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권4호
    • /
    • pp.321-326
    • /
    • 2013
  • The modulation transfer function (MTF) is a widely used indicator in assessments of remote-sensing image quality. This MTF method is also used to restore information to a standard value to compensate for image degradation caused by atmospheric or satellite jitter effects. In this study, we evaluated MTF values as an image quality indicator for the Geostationary Ocean Color Imager (GOCI). GOCI was launched in 2010 to monitor the ocean and coastal areas of the Korean peninsula. We evaluated in-orbit MTF value based on the GOCI image having a 500-m spatial resolution in the first time. The pulse method was selected to estimate a point spread function (PSF) with an optimal natural target such as a Seamangeum Seawall. Finally, image restoration was performed with a Wiener filter (WF) to calculate the PSF value required for the optimal regularization parameter. After application of the WF to the target image, MTF value is improved 35.06%, and the compensated image shows more sharpness comparing with the original image.

DEVELOPMENT OF CHLOROPHYLL ALGORITHM FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Min, Jee-Eun;Moon, Jeong-Eon;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.162-165
    • /
    • 2007
  • Chlorophyll concentration is an important factor for physical oceanography as well as biological oceanography. For these necessity many oceanographic researchers have been investigated it for a long time. But investigation using vessel is very inefficient, on the other hands, ocean color remote sensing is a powerful means to get fine-scale (spatial and temporal scale) measurements of chlorophyll concentration. Geostationary Ocean Color Imager (GOCI), for ocean color sensor, loaded on COMS (Communication, Ocean and Meteorological Satellite), will be launched on late 2008 in Korea. According to the necessity of algorithm for GOCI, we developed chlorophyll algorithm for GOCI in this study. There are two types of chlorophyll algorithms. One is an empirical algorithm using band ratio, and the other one is a fluorescence-based algorithms. To develop GOCI chlorophyll algorithm empirically we used bands centered at 412 nm, 443 nm and 555 nm for the DOM absorption, chlorophyll maximum absorption and for absorption of suspended solid material respectively. For the fluorescence-based algorithm we analyzed in-situ remote sensing reflectance $(R_{rs})$ data using baseline method. Fluorescence Line Height $({\Delta}Flu)$ calculated from $R_{rs}$ at bands centered on 681 nm and 688 nm, and ${\Delta}Flu_{(area)}$ are used for development of algorithm. As a result ${\Delta}Flu_{(area)}$ method leads the best fitting for squared correlation coefficient $(R^2)$.

  • PDF

천리안위성 정규 운영에 대한 임무계획 특성 (Characteristics of the Mission Planning for COMS Normal Operation)

  • 조영민;조혜영
    • 항공우주기술
    • /
    • 제12권2호
    • /
    • pp.163-172
    • /
    • 2013
  • 통신, 해양, 기상의 세 분야 복합 임무를 수행하는 천리안위성(Communication Ocean Meteorological Satellite: COMS)은 정지궤도 동경 $128.2^{\circ}$에서 2011년 4월부터 현재 정규 운영 임무를 수행하고 있다. 기상 및 해양 임무 운영과 위성 제어 및 관리를 위해 위성 임무 계획이 매일 수행되고 있다. 위성 임무 계획은 위성 실시간 운영을 통해 위성에 전송되고, 전송된 임무 계획에 따라 위성은 임무를 수행한다. 본 논문에서는 천리안위성의 임무 계획 특성으로 지상국 장비 구성과 일일, 주간, 월간, 계절별 운영 업무 특성을 논하였다. 천리안위성의 정규 운영 첫 1년간 운영 결과에 대한 토의를 통해 성공적인 임무계획 결과 확인도 제시하였다.

마이크로네시아 웨노섬 연안 서식지 분포의 현장조사와 위성영상 분석법 비교 (Comparison between in situ Survey and Satellite Imagery with Regard to Coastal Habitat Distribution Patterns in Weno, Micronesia)

  • 김태훈;최영웅;최종국;권문상;박흥식
    • Ocean and Polar Research
    • /
    • 제35권4호
    • /
    • pp.395-405
    • /
    • 2013
  • The aim of this study is to suggest an optimal survey method for coastal habitat monitoring around Weno Island in Chuuk Atoll, Federated States of Micronesia (FSM). This study was carried out to compare and analyze differences between in situ survey (PHOTS) and high spatial satellite imagery (Worldview-2) with regard to the coastal habitat distribution patterns of Weno Island. The in situ field data showed the following coverage of habitat types: sand 42.4%, seagrass 26.1%, algae 14.9%, rubble 8.9%, hard coral 3.5%, soft coral 2.6%, dead coral 1.5%, others 0.1%. The satellite imagery showed the following coverage of habitat types: sand 26.5%, seagrass 23.3%, sand + seagrass 12.3%, coral 18.1%, rubble 19.0%, rock 0.8% (Accuracy 65.2%). According to the visual interpretation of the habitat map by in situ survey, seagrass, sand, coral and rubble distribution were misaligned compared with the satellite imagery. While, the satellite imagery appear to be a plausible results to identify habitat types, it could not classify habitat types under one pixel in images, which in turn overestimated coral and rubble coverage, underestimated algae and sand. The differences appear to arise primarily because of habitat classification scheme, sampling scale and remote sensing reflectance. The implication of these results is that satellite imagery analysis needs to incorporate in situ survey data to accurately identify habitat. We suggest that satellite imagery must correspond with in situ survey in habitat classification and sampling scale. Subsequently habitat sub-segmentation based on the in situ survey data should be applied to satellite imagery.

COMS Normal Operation for Earth Observation Mission

  • Cho, Young-Min
    • 대한원격탐사학회지
    • /
    • 제29권3호
    • /
    • pp.337-349
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service on $128.2^{\circ}$ East of the geostationary orbit since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first one-year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

Management Information System of the Nanji Islands National Marine Reserve, China

  • Qingmei, XIAO;Huaguo, ZHANG;Changbao, ZHOU;Weigen, HUANG;Dongling, LI;Junhua, Ten
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.298-300
    • /
    • 2003
  • A management information system of the Nanji Islands National Marine Reserve is designed and constructed based on method of integration of remote sensing and geographic information system (GIS). The system consists of two sub-systems, dynamic monitoring information system and general database system. The former is used for storage and manage fundamental geographical data (topographical and bathymetric map), satellite remote sensing data (IKONOS, SPOT, IRS, NOAA and SeaWiFS etc.) and multimedia data. The latter is used for storage and manage resource data (shellfish and alga etc.), environmental data (meteorological and hydrologic) and in situ data. As part of electronic government, this system will be submitted to local government for monitoring, management and decision.

  • PDF

선박운항 분야에서의 해양위성 활용 연구 방안 (Utilization of Ocean Satellites in the field of Ship Operation)

  • 이형탁;한희정;박영제;양현;조익순
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.158-159
    • /
    • 2023
  • 해양위성의 발달과 첨단화로 우리나라 주변 해역의 광역적인 관리가 가능해졌다. 특히 선박운항 분야에서도 인공지능 및 빅데이터에 기반한 자율운항 기술개발이 이루어짐에 따라, 해양위성자료를 통한 분석 및 관측의 필요성이 있다. 해양위성자료에 선박운항분야를 접목할 수 있는 연구는 해양위성 기반 선박탐지, 해양 환경/기상 예측을 활용한 선박운항 보조 등이 있다.

  • PDF