• Title/Summary/Keyword: Ocean Model

Search Result 5,135, Processing Time 0.033 seconds

Damage Detection Using Finite Element Model Updating (유한요소 모델 개선기법을 이용한 손상추정)

  • Min, Cheon-Hong;Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, a damage detection method that uses sensitivity-based finite (FE) element model updating with the natural frequency and zero frequency was proposed. The stiffness matrix for a structure was modified using the sensitivity-based FE model updating method. A sensitivity analysis was used to update the FE model, and the natural frequencies and zero frequencies were considered as target parameters to supplement the information on the vibration characteristics. The locations and values of the damages were estimated from the modified stiffness matrix. Several numerical examples were considered to verify the performance of the proposed method.

Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

  • Kim, Dong Jin;Kim, Sun Young;You, Young Jun;Rhee, Key Pyo;Kim, Seong Hwan;Kim, Yeon Gyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.161-177
    • /
    • 2013
  • High-speed vessels require good resistance and seakeeping performance for safe operations in rough seas. The resistance and seakeeping performance of high-speed vessels varies significantly depending on their hull forms. In this study, three planing hulls that have almost the same displacement and principal dimension are designed and the hydrodynamic characteristics of those hulls are estimated by high-speed model tests. All model ships are deep-V type planing hulls. The bows of no.2 and no.3 model ships are designed to be advantageous for wave-piercing in rough water. No.2 and no.3 model ships have concave and straight forebody cross-sections, respectively. And length-to-beam ratios of no.2 and no.3 models are larger than that of no.1 model. In calm water tests, running attitude and resistance of model ships are measured at various speeds. And motion tests in regular waves are performed to measure the heave and pitch motion responses of the model ships. The required power of no.1 (VPS) model is smallest, but its vertical motion amplitudes in waves are the largest. No.2 (VWC) model shows the smallest motion amplitudes in waves, but needs the greatest power at high speed. The resistance and seakeeping performance of no.3 (VWS) model ship are the middle of three model ships, respectively. And in regular waves, no.1 model ship experiences 'fly over' phenomena around its resonant frequency. Vertical accelerations at specific locations such as F.P., center of gravity of model ships are measured at their resonant frequency. It is necessary to measure accelerations by accelerometers or other devices in model tests for the accurate prediction of vertical accelerations in real ships.

An Experimental Study for the Mechanical Properties of Model Ice Grown in a Cold Room (Cold Room을 이용한 모형빙의 재료특성에 관한 실험적 연구)

  • Kim, Jung-Hyun;Choi, Kyung-Sik;Jeong, Seong-Yeob;Seo, Young-Kyo;Cho, Seong-Rak;Lee, Chun-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.64-70
    • /
    • 2008
  • A full-scale field experiment is an important part in the design of ships and offshore structures. Full-scale tests in the ice-covered sea, however, are usually very expensive and difficult tasks. Model tests in a refrigerated ice tank may substitute this difficulty of full-scale field tests. One of the major tasks to perform proper model tests in an ice towing tank is to select a realistic material for model ice which shows correct similitude with natural sea ice. This study focuses on the testing material properties and the selection of model ice material which will be used in an ice model basin. The first Korean ice model basin will be constructed at the Maritime & Ocean Engineering Research Institute (MOERI) in 2009. With an application to the MOERI ice model basin, in this study the material properties of EG/AD/S model ice of IOT (Institute for Ocean Technology) Canada, were tested. Through comprehensive bending tests, the elastic modulus and the flexural strength of EG/AD/S model ice were evaluated and the results were compared with published test results from Canada. Instead of using an ice model basin, a cold room facility was used for making a model ice specimen. Since the cold room adopts a different freezing procedure to make model ice, the strength of the model ice specimen differs from the published test results. The reason for this difference is discussed and the future development for a making model ice is recommended.

ESTIMATION OF IOP FROM INVERSION OF REMOTE SENSING REFLECTANCE MODEL USING IN-SITU OCEAN OPTICAL DATA IN THE SEAWATER AROUND THE KOREA PENINSULA

  • Moon, Jeong-Eon;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Yang, Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.224-227
    • /
    • 2006
  • For estimation of three inherent optical properties (IOPs), the absorption coefficients for phytoplankton ($a_{ph}$) and suspended solid particle ($a_{ss}$) and dissolved organic matter ($a_{dom}$), from ocean reflectance, we used inversion of remote sensing reflectance model (Ahn et al., 2001) at this study. The IOP inversion model assumes that (1) the relationship between remote sensing reflectance ($R_{rs}$) and absorption (a) and backscattering ($b_{b}$) is well known, (2) the optical coefficients for pure water ($a_{w}$, $b_{bw}$) are known, (3) the spectral shapes of the specific absorption coefficients for phytoplankton ($a^*_{ph}$) and suspended solid particle ($a^*_{ss}$) and the specific backscattering coefficients for phytoplankton ($b_b^*_{ph}$) and suspended solid particle ($b_b^*_{ss}$) are known. The input data of IOP inversion model is used in-situ ocean optical data at the seawater around the Korea Peninsula for 5 years (2001-2005). We compared the output data of the IOP inversion model and the in-situ observation for seawater around the Korea Peninsula.

  • PDF

Study on Damage Detection Method using Meta Model (메타모델을 이용한 손상추정 기법 연구)

  • Min, Cheon-Hong;Cho, Su-Gil;Oh, Jae-Won;Kim, Hyung-Woo;Hong, Sup;Nam, Bo-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.351-358
    • /
    • 2015
  • This paper presents an effective damage detection method using a meta model. A meta model is an approximation model that uses the relations between the design and response variables. It eliminates the need for repetitive analyses of computationally expensive models during the optimization process. In this study, a response surface model was employed as the meta model. The surface model was estimated using the correlation of the stiffness and natural frequencies of the structures. The locations and values of the damages were identified using a meta model-based damage detection method. Two numerical examples (a cantilever beam and jacket structure) were considered to verify the performance of the proposed method. As a result, the damages to the structures were accurately detected.

Study on Model Test Technique of Deepwater Moorings: A Hybrid Modeling of A OTEC Mooring System (심해계류 모형시험 기법 연구: OTEC 계류시스템의 혼합형 모델링)

  • Hong, Sup;Kim, Jin-Ha;Hong, Seok-Won;Hong, Sa-Young;Jalihal, Purnima
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.97-102
    • /
    • 2001
  • This paper describes an investigation how to carry out model tests of deepwater moorings exceeding the basin depth range. A hybrid mooring model, a combination of mooring lines scaled model and a couple of linear springs, is taken into account as an equivalent substitute of a full depth mooring system. Such an idea is applied to the model test of an OTEC mooring system to be installed in 1000m deep ocean. A 1/25 scaled model test of surface vessel and the upper part of mooring system is performed at ocean engineering basin. Possibility and limitation of the hybrid mooring modeling is discussed.

  • PDF

Development of High-Resolution Pacific Ocean Circulation Model

  • You Sung-Hyup;Yoon Jong-Hwan;Seo Jang-Won;Youn Yong-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.129-132
    • /
    • 2006
  • A Pacific Ocean circulation model based on the RIAM Ocean Model (RIAMOM) with $1/6^{\circ}C\;and\;1/12^{\circ}C$ horizontal resolution successfully reproduced the peculiar circulation structures of the Pacific Ocean. The volume transports of model agree very well with the results of observations in the northwestern Pacific Ocean. Also our model successfully reproduced the observed structures of the northeastward Ryukyu Current with a subsurface core at $500{\sim}600m$. A Possible mechanism for the subsurface current core of the Ryukyu Current is proposed focusing on the blocking effect of the Ryukyu Island Chain.

  • PDF

Identification of a Nonproportional Damping Matrix Using the Finite Element Model Updating (유한요소 모델 개선기법을 이용한 비비례 감쇠행렬 추정)

  • Min, Cheon-Hong;Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.86-91
    • /
    • 2012
  • A new identification method for a nonproportional damping matrix using the finite element (FE) model updating technique is proposed. Mass and stiffness matrices of the undamped system are identified by FE model updating method. Sensitivity analysis is used to update the FE model, and zero frequencies are considered as design parameters to supplement the information of vibration characteristics. The nonproportional damping matrix is identified through the proposed method. A numerical example is considered to verify the performance of the proposed method. As a result, the damping matrix of the nonproportional system is estimated accurately.

Validation of Ocean General Circulation Model (FMS-MOM4) in Relation with Climatological and Argo Data

  • Chang, You-Soon;Cho, Chang-Woo;Youn, Yong-Hoon;Seo, Jang-Won
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.545-555
    • /
    • 2007
  • Ocean general circulation model developed by GFDL on the basis of MOM4 of FMS are examined and evaluated in order to elucidate the global ocean status. The model employs a tripolar grid system to resolve the Arctic Ocean without polar filtering. The meridional resolution gradually increases from $1/3^{\circ}$ at the equator to $1^{\circ}$ at $30^{\circ}N(S)$. Other horizontal grids have the constant $1^{\circ}$ and vertical grids with 50 levels. The ocean is also coupled to the GFDL sea ice model. It considers tidal effects along with fresh water and chlorophyll concentration. This model is integrated for a 100 year duration with 96 cpu forced by German OMIP and CORE dataset. Levitus, WOA01 climatology, serial CTD observations, WOCE and Argo data are all used for model validation. General features of the world ocean circulation are well simulated except for the western boundary and coastal region where strong advection or fresh water flux are dominant. However, we can find that information concerning chlorophyll and sea ice, newly applied to MOM4 as surface boundary condition, can be used to reduce a model bias near the equatorial and North Pacific ocean.

The Study on Model Test of Tension Leg Platform(II) - Model Test & Analysis (심해 계류인장각 플랫폼의 모형시험 연구(II) - 모형시험 및 해석)

  • Kim, Jin-Ha;Hong, Sa-Young;Choi, Yoon-Rak;Hong, Sup;Kim, Hyun-Joe
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.69-74
    • /
    • 2000
  • Linear and nonlinear motion responses of a Tension Leg Platform(TLP) was investigated by model tests. The model tests were carried out at KRISO's Ocean Engineering Basin which has a deep pit of which diameter and depth are 5 meters and 12.5 meters, respectively. Optical sensors were used for measuring drift motions, and a set of accelerometers were employed for analyzing wave frequency motions. ISSC TLP was chosen as the model for the present study. Scale ratio was 1/65 and elastic modelling of tether system were conducted. Very good agreement was obtained between experimental results and theoretical calculations not only in linear motion responses but tension responses, nonlinear wave drift force and double frequency excitations.

  • PDF