• Title/Summary/Keyword: Ocean Environment Parameter

Search Result 83, Processing Time 0.035 seconds

Stratification Variation of Summer and Winter in the South Waters of Korea (한국남해의 여름과 겨울철 성층변동)

  • Lee, Chung-Il;Koo, Do-Hyung;Yun, Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.43-50
    • /
    • 2007
  • In order to calculate the strength and to. see the variation af the stratification in the Southern Waters af Korea, the stratification parameter defined as potential energy anomaly (PEA, $V(J/m^3)$) introduced by Simpson and Hunter (1974) was used The data used in this paper were observed in August 1999 and February 2000 by National Fisheries Research and Development Institute (NFRDI). Also to know the effects af the temperature and the salinity an the stratification respectively, averaged temperature and salinity were used in the process af calculation the parameter. V is generally high in the offshore. However, in February, V in the onshore is higher than that of the offshore due to the vertical temperature gradient caused by the expansion of South Korean Coastal Waters (SKCW). In the summer, the increase af the atmospheric heating, the temperature inversion phenomenon act an the stratification as the buoyancy forcing. In most cases, the effects of the temperature on the stratification is stronger than that of the salinity. The temperature effect is predominantly due to the extent af the intrusion of Tsushima Warm Current into the study area. However, at stations where V is high the effect af the salinity is also significant. In the winter, V is very low due to the decrease of the buoyancy forcing, but same stations show the relatively high V due to the expansion of SKCW and Tsushima Warm Current.

  • PDF

Early Shell Crack Detection Technique Using Acoustic Emission Energy Parameter Blast Furnaces (음향방출 에너지 파라미터를 이용한 고로 철피균열의 조기 결함탐지 기술)

  • Kim, Dong-Hyun;Lee, Sang-Bum;Bae, Dong-Myung;Yang, Bo-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.

Dynamic Analysis and Structural Optimization of a Fiber Optic Sensor Using Neural Networks

  • Kim Yong-Yook;Kapania Rakesh K.;Johnson Eric R.;Palmer Matthew E.;Kwon Tae-Kyu;Hong Chul-Un;Kim Nam-Gyun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.251-261
    • /
    • 2006
  • The objective of this work is to apply artificial neural networks for solving inverse problems in the structural optimization of a fiber optic pressure sensor. For the sensor under investigation to achieve a desired accuracy, the change in the distance between the tips of the two fibers due to the applied pressure should not interfere with the phase change due to the change in the density of the air between the two fibers. Therefore, accurate dynamic analysis and structural optimization of the sensor is essential to ensure the accuracy of the measurements provided by the sensor. To this end, a normal mode analysis and a transient response analysis of the sensor were performed by combining commercial finite element analysis package, MSC/NASTRAN, and MATLAB. Furthermore, a parametric study on the design of the sensor was performed to minimize the size of the sensor while fulfilling a number of constraints. In performing the parametric study, the need for a relationship between the design parameters and the response of the sensor was fulfilled by using a neural network. The whole process of the dynamic analysis using commercial finite element analysis package and the parameter optimization of the sensor were automated within the MATLAB environment.

Forecasting Baltic Dry Index by Implementing Time-Series Decomposition and Data Augmentation Techniques (시계열 분해 및 데이터 증강 기법 활용 건화물운임지수 예측)

  • Han, Min Soo;Yu, Song Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.701-716
    • /
    • 2022
  • Purpose: This study aims to predict the dry cargo transportation market economy. The subject of this study is the BDI (Baltic Dry Index) time-series, an index representing the dry cargo transport market. Methods: In order to increase the accuracy of the BDI time-series, we have pre-processed the original time-series via time-series decomposition and data augmentation techniques and have used them for ANN learning. The ANN algorithms used are Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) to compare and analyze the case of learning and predicting by applying time-series decomposition and data augmentation techniques. The forecast period aims to make short-term predictions at the time of t+1. The period to be studied is from '22. 01. 07 to '22. 08. 26. Results: Only for the case of the MAPE (Mean Absolute Percentage Error) indicator, all ANN models used in the research has resulted in higher accuracy (1.422% on average) in multivariate prediction. Although it is not a remarkable improvement in prediction accuracy compared to uni-variate prediction results, it can be said that the improvement in ANN prediction performance has been achieved by utilizing time-series decomposition and data augmentation techniques that were significant and targeted throughout this study. Conclusion: Nevertheless, due to the nature of ANN, additional performance improvements can be expected according to the adjustment of the hyper-parameter. Therefore, it is necessary to try various applications of multiple learning algorithms and ANN optimization techniques. Such an approach would help solve problems with a small number of available data, such as the rapidly changing business environment or the current shipping market.

OGM-Based Real-Time Obstacle Detection and Avoidance Using a Multi-beam Forward Looking Sonar

  • Han-Sol Jin;Hyungjoo Kang;Min-Gyu Kim;Mun-Jik Lee;Ji-Hong Li
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.187-198
    • /
    • 2024
  • Autonomous underwater vehicles (AUVs) have a limited bandwidth for real-time communication, limiting rapid responses to unexpected obstacles. This study addressed how AUVs can navigate to a target without a pre-existing obstacle map by generating one in real-time and avoiding obstacles. This paper proposes using forward-looking sonar with an occupancy grid map (OGM) for real-time obstacle mapping and a potential field algorithm for avoiding obstacles. The OGM segments the map into grids, updating the obstacle probability of each cell for precise, quick mapping. The potential field algorithm attracts the AUV towards the target and uses repulsive forces from obstacles for path planning, enhancing computational efficiency in a dynamic environment. Experiments were conducted in coastal waters with obstacles to verify the real-time obstacle mapping and avoidance algorithm. Despite the high noise in sonar data, the experimental results confirmed effective obstacle mapping and avoidance. The OGM-based potential field algorithm was computationally efficient, suitable for single-board computers, and demonstrated proper parameter adjustments through two distinct scenarios. The experiments also identified some of challenges, such as dynamic changes in detection rates, propulsion bubbles, and changes in repulsive forces caused by sudden obstacles. An enhanced algorithm to address these issues is currently under development.

Nonlinear Scattering of Difference Frequency Acoustic Wave in Water-Saturated Sandy Sediment (수중 모래퇴적물에서 차주파수 음파의 비선형 산란)

  • Kim Byoung-Nam;Lee Kang Il;Yoon Suk Wang;Choi Bok Kyoung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.347-348
    • /
    • 2004
  • Nonlinear scattering of difference frequency acoustic wave in a water-saturated sandy sediment was investigated. Difference frequency acoustic wave was observed to be scattered due to the nonlinearity of water-saturated sandy sediment when the collinear acoustic waves with two different fundamental frequencies are incident on the sediment. The pressure level of the difference frequency acoustic wave was 6 dB higher than the background noise level. It seems very useful to evaluate the nonlinear parameter of water-saturated sandy sediment without disturbing the sediment. Such nonlinear acoustic response of water-saturated sandy sediment can be used as background acoustic data for estimating the gas void fraction in marine gassy sandy sedimen.

  • PDF

Fluctuation of Tidal Front and Expansion of Cold Water Region in the Southwestern Sea of Korea (한국 남서해역에서 조석전선의 변동과 저수온역 확장기작)

  • Jeong, Hee-Dong;Kwoun, Chul-Hui;Kim, Sang-Woo;Cho, Kyu-Dae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.289-296
    • /
    • 2009
  • The appearance and variation of cold water area and its expansion mechanism of tidal front in the south western coast of Korea in summer were studied on the basis of oceanographic data(1966-1995), satellite images from NOAA and SeaWiFs and numerical model. Cold water appearance in southwestern field of Jindo was due to the vertical mixing by strong tidal current. Tidal front where horizontal gradient of water temperature was more than $0.3^{\circ}C$/km parallels to contours of H/$U^3$ parameter 2.0~2.5 and the outer boundary of cold water region corresponds with contours of the parameter 2.5~3.0 in the southwestern sea of Korea during the period between neap and spring tides. The position replacement of tidal front formed in the study ares varies in a range of 25~75km and cold water region extends about 90km. These suggest that the magnitude of variation of frontal position and cold water area was proportionate to the tidal current during lunar tidal cycle. Moreover, it was estimated that the southwestward expansion of cold water region was derived from the southwestward tide-induced residual currents with speed more than 10cm/s.

  • PDF

Analysis of Micro-Sedimentary Structure Characteristics Using Ultra-High Resolution UAV Imagery: Hwangdo Tidal Flat, South Korea (초고해상도 무인항공기 영상을 이용한 한국 황도 갯벌의 미세 퇴적 구조 특성 분석)

  • Minju Kim;Won-Kyung Baek;Hoi Soo Jung;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.295-305
    • /
    • 2024
  • This study aims to analyze the micro-sedimentary structures of the Hwangdo tidal flats using ultra-high resolution unmanned aerial vehicle (UAV) data. Tidal flats, located in the transitional area between land and sea, constantly change due to tidal activities and provide a unique environment important for understanding sedimentary processes and environmental conditions. Traditional field observation methods are limited in spatial and temporal coverage, and existing satellite imagery does not provide sufficient resolution to study micro-sedimentary structures. To overcome these limitations, high-resolution images of the Hwangdo tidal flats in Chungcheongnam-do were acquired using UAVs. This area has experienced significant changes in its sedimentary environment due to coastal development projects such as sea wall construction. From May 17 to 18, 2022, sediment samples were collected from 91 points during field surveys and 25 in-situ points were intensively analyzed. UAV data with a spatial resolution of approximately 0.9 mm allowed identifying and extracting parameters related to micro-sedimentary structures. For mud cracks, the length of the major axis of the polygons was extracted, and the wavelength and ripple symmetry index were extracted for ripple marks. The results of the study showed that in areas with mud content above 80%, mud cracks formed at an average major axis length of 37.3 cm. In regions with sand content above 60%, ripples with an average wavelength of 8 cm and a ripple symmetry index of 2.0 were formed. This study demonstrated that micro-sedimentary structures of tidal flats can be effectively analyzed using ultra-high resolution UAV data without field surveys. This highlights the potential of UAV technology as an important tool in environmental monitoring and coastal management and shows its usefulness in the study of sedimentary structures. In addition, the results of this study are expected to serve as baseline data for more accurate sedimentary facies classification.

Development of Design Formula for Predicting Post-Buckling Behaviour and Ultimate Strength of Cylindrical Shell

  • Lee, Jung-Ho;Oh, Young-Cheol;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • Cylindrical shells are often used in ship structures at deck plating with a camber, side shell plating at fore and aft parts, and bilge structure part. It has been believed that such curved shells can be modelled fundamentally by a part of a cylinder under axial compression. From the estimations with the usage of cylinder models, it is known that, in general, curvature increases the buckling strength of a curved shell subjected to axial compression, and that curvature is also expected to increase the ultimate strength. We conduct series of elasto-plastic large deflection analyses in order to clarify the fundamentals in buckling and plastic collapse behaviour of cylindrical shells under axial compression. From the numerical results, we derive design formula for predicting the ultimate strength of cylindrical shell, based on a series of the nonlinear finite element calculations for all edges, simply supporting plating, varying the slenderness ratio, curvature and aspect ratio, as well as the following design formulae for predicting the ultimate strength of cylindrical shell. From a number of analysis results, fitting curve can be developed to use parameter of slenderness ratio with implementation of the method of least squares. The accuracy of design formulae for evaluating ultimate strength has been confirmed by comparing the calculated results with the FE-analysis results and it has a good agreement to predict their ultimate strength.

Long Term Changes Pattern in Marine Ecosystem of Korean Waters (우리나라 주변 해양생태계의 장기 변동)

  • Rahman, S.M.M.;Lee, Chung-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.193-198
    • /
    • 2012
  • Long term changes in winter time(JFM) sea surface temperature(SST) and marine ecosystem of different Korean waters during last five to six decades were illustrated. Fishing intensity with climate-ocean variability(e.g. SST) have been increasing since 1970s in all of the Korean marine waters. Winter SST around Korean waters went to colder regime in early 1980s and after the late 1980s increased gradually. After 1988/89 CRS all of the waterbody started warmer regime and well coincided with the CRS phenomena. Large predatory, small pelagic and crustacean and mollusks abundance were well coincided by the warmer SST regime after 1988/89 CRS and changed the fishery from demersal fishery to pelagic fishery. Ecosystem parameter of Mean Trophic Level(MTL) showed continuous decreasing trend since mid of 1970s which was mostly affected by the increasing of lower trophic level species. Fishing in balance(FIB) index showed increasing pattern since early 1970s to the late of 1970s and from early 1980s it was almost stable until now. Finally wasp-waist population of anchovy and Japanese sardine have a greater impact to the whole MTL since early 1970s.