• 제목/요약/키워드: Ocean Conditions

검색결과 2,603건 처리시간 0.032초

Anti-icing Method of Heated Walkway in Ice Class Ships: Efficiency Verification of CNT-based Surface Heating Element Method Through Numerical Analysis

  • Woo-Jin Park;Dong-Su Park;Mun-Beom Shin;Young-Kyo Seo
    • 한국해양공학회지
    • /
    • 제37권5호
    • /
    • pp.215-224
    • /
    • 2023
  • While melting glaciers due to global warming have facilitated the development of polar routes, Arctic vessels require reliable anti-icing methods to prevent hull icing. Currently, the existing anti-icing method, i.e., the heating coil method, has disadvantages, such as disconnection and power inefficiency. Therefore, a carbon nanotube-based surface heating element method was developed to address these limitations. In this study, the numerical analysis of the surface heating element method was performed using ANSYS. The numerical analysis included conjugate heat transfer and computational fluid dynamics to consider the conduction solids and the effects of wind speed and temperature in cold environments. The numerical analysis method of the surface heating element method was validated by comparing the experimental results of the heating coil method with the numerical analysis results (under the -30 ℃ conditions). The surface heating element method demonstrated significantly higher efficiency, ranging from 56.65-80.17%, depending on the conditions compared to the heating coil method. Moreover, even under extreme environmental conditions (-45 ℃), the surface heating element method satisfied anti-icing requirements. The surface heating element method is more efficient and economical than the heating coil method. However, proper heat flux calculation for environmental conditions is required to prevent excessive design.

Prescreening of Environmental Conditions for Prediction of Severe Operation Condition of Offshore Structures

  • Lim, Dong-Hyun;Kim, Yonghwan;Kim, Taeyoung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권4호
    • /
    • pp.252-267
    • /
    • 2015
  • Offshore structures might encounter several environmental and operating conditions during their lifetime of several decades. In order to predict the dynamic behavior of offshore structures, several simulation cases should be considered to deal with all the combinations of ocean environments and operating conditions. Because a sophisticated time-domain coupled dynamic analysis requires an extremely large amount of computational time to handle all the possible cases, an efficient preliminary process to prescreen the probability of severe environmental conditions can be helpful in downsizing the number of simulation cases and computational effort. In this study, a prescreening procedure to reduce the number of environmental conditions for dynamic analyses of offshore structures is proposed. For the efficiency of the procedure, frequency-domain theories were adopted to estimate the platform offset, using quasi-static analyses in line tension prediction. The results were validated by comparing with those of dynamic analysis coupled between platform and mooring lines, and reasonable agreement was observed. In addition, the characteristics of environmental conditions classified to be severe to the system were investigated through the application of the developed prescreening scheme to several actual environmental conditions.

Analysis of the fluid-solid-thermal coupling of a pressurizer surge line under ocean conditions

  • Yu, Hang;Zhao, Xinwen;Fu, Shengwei;Zhu, Kang
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3732-3744
    • /
    • 2022
  • To investigate the effects of ocean conditions on the thermal stress and deformation caused by thermal stratification of a pressurizer surge line in a floating nuclear power plant (FNPP), the finite element simulation platform ANSYS Workbench is utilized to conduct the fluid-solid-thermal coupling transient analysis of the surge line under normal "wave-out" condition (no motion) and under ocean conditions (rolling and pitching), generating the transient response characteristics of temperature distribution, thermal stress and thermal deformation inside the surge line. By comparing the calculated results for the three motion conditions, it is found that ocean conditions can significantly improve the thermal stratification phenomenon within the surge line, but may also result in periodic oscillations in the temperature, thermal stress, and thermal deformation of the surge line. Parts of the surge line that are more susceptible to thermal fatigue damage or failure are determined. According to calculation results, the improvements are recommended for pipeline structure to reduce the effects of thermal oscillation caused by ocean conditions. The analysis method used in this study is beneficial for designing and optimizing the pipeline structure of a floating nuclear power plant, as well as for increasing its safety.

Effect of Surface Condition and Corrosion-Induced Defect on Guided Wave Propagation in Reinforced Concrete

  • 나원배
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.1-6
    • /
    • 2006
  • Corrosion of reinforcing steel bars is a major concern for ocean engineers when reinforced concrete structures are exposed to marine environments. Evaluating the degree of corrosion and corrosion-induced defects is extremely necessary to pursue a proper retrofit or rehabilitation plan for reinforced concrete structures. A promising inspection should be carried out for the evaluation, otherwise the retrofit or rehabilitation process would be useless. Nowadays, ultrasonic guided wave-based inspection techniques become quite promising for the inspection, mainly because of their long-range propagation capability and their sensitivity to different types of defects or conditions. Evaluating haw the guided waves response to the different types of defects or conditions is quite challenging and important. This study shows how surface conditions of reinforcing bars and a corrosion-induced defect, separation, affect guided wave propagation in reinforced concrete. Experiments and associated signal analysis show the sensitivity of guided waves to the surface conditions, as well as the amounts of separation at the interface between. concrete and steel bar.

Impact of Hull Condition and Propeller Surface Maintenance on Fuel Efficiency of Ocean-Going Vessels

  • Tien Anh Tran;Do Kyun Kim
    • 한국해양공학회지
    • /
    • 제37권5호
    • /
    • pp.181-189
    • /
    • 2023
  • The fuel consumption of marine diesel engines holds paramount importance in contemporary maritime transportation and shapes energy efficiency strategies of ocean-going vessels. Nonetheless, a noticeable gap in knowledge prevails concerning the influence of ship hull conditions and propeller roughness on fuel consumption. This study bridges this gap by utilizing artificial intelligence techniques in Matlab, particularly convolutional neural networks (CNNs) to comprehensively investigate these factors. We propose a time-series prediction model that was built on numerical simulations and aimed at forecasting ship hull and propeller conditions. The model's accuracy was validated through a meticulous comparison of predictions with actual ship-hull and propeller conditions. Furthermore, we executed a comparative analysis juxtaposing predictive outcomes with navigational environmental factors encompassing wind speed, wave height, and ship loading conditions by the fuzzy clustering method. This research's significance lies in its pivotal role as a foundation for fostering a more intricate understanding of energy consumption within the realm of maritime transport.

기후변화에 따른 동중국해 해양 순환 변화 예측에 대한 수치 실험 연구 (Numerical Experiment of Environmental Change in the East China Sea under Climate Change)

  • 민홍식;김철호
    • Ocean and Polar Research
    • /
    • 제34권4호
    • /
    • pp.431-444
    • /
    • 2012
  • We simulated and compared present and future ocean circulation in the East China Sea using an East Asia Regional Ocean model. Mean climate states for 1990~1999 and 2030~2039 were used as surface conditions for simulations of present and future ocean circulation, which were derived from the simulations of three different global climate models, ECHAM5-MPI, GFDL-CM2.0 and MIROC3.2_hires, for the 20th century and those of 21st century as projected by the IPCC SRES A1B. East Asia Regional Ocean model simulated the detailed patterns of temperature, salinity and current fields under present and future climate conditions and their changes instead of the simple structures of global climate models. To some extent, there are consistent ocean circulation changes derived from the three pairs corresponding to the global climate model in so much as the temperature increases not only in winter but summer at both the surface and bottom and that temperature and salinity changes are prominent near the Chinese coast and in the Changjiang bank. However, the simulated circulations are different among each other depending on the prescribed atmospheric conditions not only under present climate but also with regard to future climate conditions. There is not a coincident tendency in ocean circulation changes between present and future simulations derived from the three pairs. This suggests that more simulations with different pairs are needed.

해양관측용 부이의 설계 건전성 평가 - Part I: 실해역 조건 하의 부이 선체 구조건전성 평가 (Design of Oceanography Buoy - Part I: Structural Integrity of Hull)

  • 김태우;금동민;한대석;이원부;이제명
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.81-88
    • /
    • 2009
  • An evaluation of the structural integrity of an oceanographic buoy subjected to extreme loads was carried out in this study. Load components, such as the current, waves, and wind load, which were required for the sea's environmental conditions, were calculated precisely. A non linear finite element analysis was conducted to elucidate the structural response of the buoy under extreme environmental conditions. Based on the surface drift velocity scheme, a dynamic impact analysis was also carried out for the case of collision accidents. The proposed numerical technique would be a useful and cost effective tool for design scheme evaluation in the field of oceanographic buoys.

Designation of the Boundary Conditions for Estimating the Thrust Loss due to Thruster-Hull Interactions

  • Gi Su Song;Seung Jae Lee;Ju Sung Kim
    • 한국해양공학회지
    • /
    • 제36권6호
    • /
    • pp.353-363
    • /
    • 2022
  • The azimuth thruster is mainly installed on a vessel that requires a dynamic positioning (DP) function for special purposes. When the azimuth thruster on a vessel operates for DP, the thrust loss is induced by the thruster-hull interaction. This study examined the influence of boundary conditions in numerical simulations for predicting thrust loss. Wind turbine installation vessels (WTIV) and floating production storage and offloading (FPSO) were chosen as a target vessels. In this study, two types of boundaries were defined. The first consideration is that the boundary condition was assigned with consideration of the azimuth angle of the thruster, whereas it is fixed regardless azimuth angle of the thruster. The predicted thrust loss according to these boundary conditions showed a difference. This observation originated from the current load of the vessel. Therefore, the boundary conditions for which the current load is not induced need to be designated to obtain a realistic thrust loss in a numerical simulation.

PACIFIC EXTREME WIND AND WAVE CONDITIONS OBSERVED BY SYNTHETIC APERTURE RADAR

  • Lehner, Susanne;Reppucci, Antonio;Schulz-Stellenfleth, Johannes;Yang, Chang-Su
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.390-393
    • /
    • 2006
  • It is well known that synthetic aperture radar (SAR) provides information on ocean winds and surface waves. SAR data are of particularly high value in extreme weather conditions, as radar is able to penetrate the clouds providing information on different ocean surface processes. In this presentation some recent results on SAR observation of extreme wind and ocean wave conditions is summarised. Particular emphasize is put on the investigation of typhoons and extratropical cyclones in the North Pacific. The study is based on the use of ENVISAT ASAR wide swath images. Wide swath and scansar data are well suited for a detailed investigation of cyclones. Several examples like, e.g., typhoon Talim will be presented, demonstrating that these data provide valuable information on the two dimensional structure of the both the wind and the ocean wave field. Comparisons of the SAR observation with parametric and numerical model data will be discussed. Some limitations of standard imaging models like, e.g., CMOD5 for the use in extreme wind conditions are explained and modifications are proposed. Finally the study summarizes the capabilities of new high resolution TerraSAR-X mission to be launched in October 2006 with respect to the monitoring of extreme weather conditions. The mission will provide a spatialresolution up to 1m and has full polarimetric capabilities.

  • PDF

규칙파 중 반잠수식 해양구조물 주위의 런업에 관한 실험 연구 (Experimental Study of Wave Run-up on Semi-submersible Offshore Structures in Regular Waves)

  • 김남우;남보우;조윤상;성홍근;홍사영
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.6-11
    • /
    • 2014
  • This paper presents the results of an experimental study of wave run-ups on a semi-submersible offshore structure. A series of model tests with a 1:80 scale ratio were carried out in the two-dimensional wave basin of MOERI/KIOST. The experimental model had two columns and one pontoon. The model was fixed and wave elevations were measured at five points per column. Two different draft (operational & survival) conditions and three wave heights were considered under regular wave conditions. First, the nonlinear characteristics of wave run-ups are discussed by using the time series data. Then, the wave heights are compared with numerical results based on the potential flow model. The comparison shows fairly good correlation between the experiments and computations. Finally, wave run-ups under the operational and survival conditions are suggested.