• Title/Summary/Keyword: Ocean Color Monitoring

Search Result 92, Processing Time 0.02 seconds

종합적인 지구환경 감시를 위한 지구관측시스템 (EOS) 사업

  • Park, Sun-Ki
    • Atmosphere
    • /
    • v.12 no.4
    • /
    • pp.56-68
    • /
    • 2002
  • In this study, an overview of the Earth Observing System (EOS) program is provided with discussions on its spacecrafts and instruments, and on the scientific issues. The EOS satellites aim at monitoring the Earth environmental system by observing parameters of subsystems such as atmosphere, ocean, land, and biosphere. The first EOS flagship, Terra, was launched on December 1999. Five instruments onboard Terra can measure cloud and aerosol properties, radiation, terrestrial surface, and ocean color. The second EOS flagship, Aqua, which was launched on May 2002, loads six instruments that measure clouds, radiation, precipitation, terrestrial surface, ocean color and sea surface temperature. The observational data available from the EOS satellites may complement data from the Communication-Oceanography-Meteorology satellite, which will be launched in 2008, for meteorological and environmental forecasts.

Tracing the trajectory of pelagic Sargassum using satellite monitoring and Lagrangian transport simulations in the East China Sea and Yellow Sea

  • Kwon, Kyungman;Choi, Byoung-Ju;Kim, Kwang Young;Kim, Keunyong
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.315-326
    • /
    • 2019
  • Northeastward drifts of massive Sargassum patches were observed in the East China Sea (ECS) and Yellow Sea (YS) by the Geostationary Ocean Color Imager (GOCI) in May 2017. Coverage of the brown macroalgae patches was the largest ever recorded in the ECS and YS. Three-dimensional circulation modeling and Lagrangian particle tracking simulations were conducted to reproduce drifting trajectories of the macroalgae patches. The trajectories of the macroalgae patches were controlled by winds as well as surface currents. A windage (leeway) factor of 1% was chosen based on sensitivity simulations. Southerly winds in May 2017 contributed to farther northward intrusion of the brown macroalgae into the YS. Although satellite observation and numerical modeling have their own limitations and associated uncertainties, the two methods can be combined to find the best estimate of Sargassum patch trajectories. When satellites were unable to capture all patches because of clouds and sea fog in the ECS and YS, the Lagrangian particle tracking model helped to track and restore the missing patches in satellite images. This study suggests that satellite monitoring and numerical modeling are complementary to ensure accurate tracking of macroalgae patches in the ECS and YS.

Characteristics of Ocean Scanning Multi-spectral Imager(OSMI) (Ocean Scanning Multi-spectral Imager (OSMI) 특성)

  • Young Min Cho;Sang-Soon Yong;Sun Hee Woo;Sang-Gyu Lee;Kyoung-Hwan Oh;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.223-231
    • /
    • 1998
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of less than 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-orbit image data storage. The instrument also performs sun calibration and dark calibration for on-orbit instalment calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a Charge Coupled Device (CCD) Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412, 443, 490, 510, 555, 670, 765 and 865 nm during ground characterization of instalment. In addition to the ground calibration, the on-orbit calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.

COMPARISON OF RED TIDE DETECTION BY A NEW RED TIDE INDEX METHOD AND STANDARD BIO-OPTICAL ALGORITHM APPLIED TO SEA WIFS IMAGERY IN OPTICALLY COMPLEX CASE-II WATERS

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.445-449
    • /
    • 2005
  • Various methods to detect the phytoplankton/red tide blooms in the oceanic waters have been developed and tested on satellite ocean color imagery since the last two and half decades, but accurate detection of blooms with these methods remains challenging in optically complex turbid waters, mainly because of the eventual interference of absorbing and scattering properties of dissolved organic and particulate inorganic matters with these methods. The present study introduces a new method called Red tide Index (Rl), providing indices which behave as a good measure of detecting red tide algal blooms in high scattering and absorbing waters of the Korean South Sea and Yellow Sea. The effectiveness of this method in identifying and locating red tides is compared with the standard Ocean Chlorophyll 4 (OC4) bio-optical algorithm applied to SeaWiFS ocean imagery, acquired during two bloom episodes on 27 March 2002 and 28 September 2003. The result revealed that OC4 bio-optical algorithm falsely identifies red tide blooms in areas abundance in colored dissolved organic and particulate inorganic matter constituents associated with coastal areas, estuaries and river mouths, whereas red tide index provides improved capability of detecting, predicting and monitoring of these blooms in both clear and turbid waters.

  • PDF

Development the Geostationary Ocean Color Imager (GOCI) Data Processing System (GDPS) (정지궤도 해색탑재체(GOCI) 해양자료처리시스템(GDPS)의 개발)

  • Han, Hee-Jeong;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.239-249
    • /
    • 2010
  • The Geostationary Ocean Color Imager (GOCI) data-processing system (GDPS), which is a software system for satellite data processing and analysis of the first geostationary ocean color observation satellite, has been developed concurrently with the development of th satellite. The GDPS has functions to generate level 2 and 3 oceanographic analytical data, from level 1B data that comprise the total radiance information, by programming a specialized atmospheric algorithm and oceanic analytical algorithms to the software module. The GDPS will be a multiversion system not only as a standard Korea Ocean Satellite Center(KOSC) operational system, but also as a basic GOCI data-processing system for researchers and other users. Additionally, the GDPS will be used to make the GOCI images available for distribution by satellite network, to calculate the lookup table for radiometric calibration coefficients, to divide/mosaic several region images, to analyze time-series satellite data. the developed GDPS system has satisfied the user requirement to complete data production within 30 minutes. This system is expected to be able to be an excellent tool for monitoring both long-term and short-term changes of ocean environmental characteristics.

Study on the First On-Orbit Solar Calibration Measurement of Ocean Scanning Multi-spectral Imager (OSMI)

  • Cho, Young-Min
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • The ocean Scanning Multi-spectral Imager (OSMI) is a payload on the KOrea Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring f the study of biological oceanography. OSMI performs solar and dark calibrations for on-orbit instrument calibration. The purpose of the solar calibration is to monitor the degradation of imaging performance for each pixel of 6 spectral bands and to correct the degradation effect on OSMI image during the ground station date processing. The design, the operation concept, and the radiometric characteristics of the solar calibration are investigated. A linear model of image response and a solar calibration radiance model are proposed to study the instrument characteristics using the solar calibration data. The performance of spectral responsivity and spatial response uniformity. The first solar calibration data and the analysis results are important references for further study on the on-orbit stability of OSMI response during its lifetime.

The Ground Checkout Test of OSMI(Ocean Scanning Multispectral Imager) on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.375-380
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of<1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests and instrument aliveness/functional test as well, such as launch environment, on-orbit environment (Thermal/vacuum) and EMl/EMC test were performed at KARI. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite in the late 1999 and the image is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.

  • PDF

SATELLITE DETECTION OF RED TIDE ALGAL BLOOMS IN TURBID COASTAL WATERS

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.471-474
    • /
    • 2006
  • Several planktonic dinoflagellates, including Cochlodinium polykrikoides (p), are known to produce red tides responsible for massive fish kills and serious economic loss in turbid Northwest Pacific (Korean and neighboring) coastal waters during summer and fall seasons. In order to mitigate the impacts of these red tides, it is therefore very essential to detect, monitor and forecast their development and movement using currently available remote sensing technology because traditional ship-based field sampling and analysis are very limited in both space and temporal frequency. Satellite ocean color sensors, such as Sea-viewing Wide Field-of-view Sensor (SeaWiFS), are ideal instruments for detecting and monitoring these blooms because they provide relatively high frequency synoptic information over large areas. Thus, the present study attempts to evaluate the red tide index methods (previously developed by Ahn and Shanmugam et al., 2006) to identify potential areas of red tides from SeaWiFS imagery in Korean and neighboring waters. Findings revealed that the standard spectral ratio algorithms (OC4 and LCA) applied to SeaWiFS imagery yielded large errors in Chl retrievals for coastal areas, besides providing false information about the encountered red tides in the focused waters. On the contrary, the RI coupled with the standard spectral ratios yielded comprehensive information about various ranges of algal blooms, while RCA Chl showing a good agreement with in-situ data led to enhanced understanding of the spatial and temporal variability of the recent red tide occurrences in high scattering and absorbing waters off the Korean and Chinese coasts. The results suggest that the red tide index methods for the early detection of red tides blooms can provide state managers with accurate identification of the extent and location of blooms as a management tool.

  • PDF

Characteristics of the Real-Time Operation For COMS Normal Operation (천리안위성 정상 운영의 실시간 운영 특성)

  • Cho, Young-Min;Park, Cheol-Min;Kim, Bang-Yeop;Lee, Sang-Cherl
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.80-87
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) has the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service. The COMS is located at $128.2{\circ}$ east longitude on the geostationary orbit and currently under normal operation service since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band communication payload. The satellite controls for the three mission operations and the satellite maintenance are done by the real-time operation which is the activity to communicate directly with the satellite through command and telemetry. In this paper the real-time operation for COMS is discussed in terms of the ground station configuration and the characteristics of daily, weekly, monthly, seasonal, and yearly operation activities. The successful real-time operation is also confirmed with the one year operation results for 2011 which includes both the latter part of the In-Orbit-Test (IOT) and the first year normal operation of the COMS.

The Ground Checkout Test of OSMI on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.297-305
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform global ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800km and a ground sample distance (GSD) of < 1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests including instrument aliveness/functional test, such as launch environment, on-orbit environment (Thermal/Vacuum) and EMI/EMC test were performed at KARl. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite on December 21,1999 and is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.