• Title/Summary/Keyword: Ocean Color Imager

Search Result 161, Processing Time 0.022 seconds

Combined Gain Analysis of L-band Transmit Antenna in COMS (COMS L-대역 송신 안테나 합성 이득 해석)

  • Kim, Joong-Pyo;Yang, Koon-Ho;Lee, Sang-Kon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.19-24
    • /
    • 2010
  • The COMS (Communication Ocean Meteorological Satellite) is a hybrid geostationary satellite including communication, ocean, and meteorological payloads. The COMS includes the MODCS (Meteorological and Ocean Data Communication Subsystem) which provides transmitting the raw data collected by meteorological payload called MI (Meteorological Imager) and ocean payload named GOCI (Geostationary Ocean Color Imager) to the ground station, and relaying the meteorological data processed on the ground to the end-user stations. Here, for the L-band transmit antenna transmitting SD (Sensor Data) signal and the processed signal, from the system point of view, it is required to estimate the combined antenna gain when the L-band transmit is placed with MI and GOCI payloads on the earth panel of COMS. First of all, the L-band transmit horn is designed and analyzed for the requirements given, and then after placing it on the earth panel, the combined gain analysis is performed using three different analysis methods. It's shown that the obtained gain patterns are very similar among three different analysis methods. Finally the antenna gain degradation of less than 0.5 dB is estimated.

DEVELOPMENT OF GOCI/COMS DATA PROCESSING SYSTEM

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Han, Hee-Jeong;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.90-93
    • /
    • 2006
  • The first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. The special feature with GOCI is that like MODIS, MERIS and GLI, it will include the band triplets 660-680-745 for the measurements of sun-induced chlorophyll-a fluorescence signal from the ocean. The GOCI will provide SeaWiFS quality observations with frequencies of image acquisition 8 times during daytime and 2 times during nighttime. With all the above features, GOCI is considered to be a remote sensing tool with great potential to contribute to better understanding of coastal oceanic ecosystem dynamics and processes by addressing environmental features in a multidisciplinary way. To achieve the objectives of the GOCI mission, we develop the GOCI Data Processing System (GDPS) which integrates all necessary basic and advanced techniques to process the GOCI data and deliver the desired biological and geophysical products to its user community. Several useful ocean parameters estimated by in-water and other optical algorithms included in the GDPS will be used for monitoring the ocean environment of Korea and neighbouring countries and input into the models for climate change prediction.

  • PDF

Monitoring of the Suspended Sediments Concentration in Gyeonggi-bay Using COMS/GOCI and Landsat ETM+ Images (COMS/GOCI 및 Landsat ETM+ 영상을 활용한 경기만 지역의 부유퇴적물 농 도 변화 모니터링)

  • Eom, Jinah;Lee, Yoon-Kyung;Choi, Jong-Kuk;Moon, Jeong-Eon;Ryu, Joo-Hyung;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In coastal region, estuaries have complex environments where dissolved and particulate matters are mixed with marine water and substances. Suspended sediment (SS) dynamics in coastal water, in particular, plays a major role in erosion/deposition processes, biomass primary production and the transport of nutrients, micropollutants, heavy metals, etc. Temporal variation in suspended sediment concentration (SSC) can be used to explain erosion/sedimentation patterns within coastal zones. Remotely sensed data can be an efficient tool for mapping SS in coastal waters. In this study, we analyzed the variation in SSC in coastal water using the Geostationary Ocean Color Imager (GOCI) and Landsat Enhanced Thematic Mapper Plus (ETM+) in Gyeonggi-bay. Daily variations in GOCI-derived SSC showed low values during ebb time. Current velocity and water level at 9 and 10 am is 37.6, 28.65 $cm{\cdot}s^{-1}$ and -1.23, -0.61 m respectively. Water level has increased to 1.18 m at flood time. In other words, strong current velocity and increased water level affected high SSC value before flood time but SSC decreased after flood time. Also, we compared seasonal SSC with the river discharge from the Han River and the Imjin River. In summer season, river discharge showed high amount, when SSC had high value near the inland. At this time SSC in open sea had low value. In contrast, river discharge amount from inland showed low value in winter season and, consequently, SSC in the open sea had high value because of northwest monsoon.

Fusion of Aerosol Optical Depth from the GOCI and the AHI Observations (GOCI와 AHI 자료를 활용한 에어로졸 광학두께 합성장 산출 연구)

  • Kang, Hyeongwoo;Choi, Wonei;Park, Jeonghyun;Kim, Serin;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.861-870
    • /
    • 2021
  • In this study, fused Aerosol Optical Depth (AOD) data were produced using AOD products from the Geostationary Ocean Color Imager (GOCI) onboard Communication, Oceanography and Meteorology Satellite (COMS)satellite and the Advanced Himawari Imager (AHI) onboard Himawari-8. Since the spatial resolution and the coordinate system between the satellite sensors are different, a preprocessing was first preceded. After that, using the level 1.5 AOD dataset of AErosol RObotic NETwork (AERONET), which is ground-based observation, correlations and trends between each satellite AOD and AERONET AOD were utilized to produce more accurate satellite AOD data than the originalsatellite AODs. The fused AOD were found to be more accurate than the originalsatellite AODs. Root Mean Square Error (RMSE) and mean bias of the fused AODs were calculated to be 0.13 and 0.05, respectively. We also compared errors of the fused AODs against those of the original GOCI AOD (RMSE: 0.15, mean bias: 0.11) and the original AHI AOD (RMSE: 0.15, mean bias: 0.05). It was confirmed that the fused AODs have betterspatial coverage than the original AODsin areas where there are no observations due to the presence of cloud from a single satellite.

Cross-Calibration of GOCI-II in Near-Infrared Band with GOCI (GOCI를 이용한 GOCI-II 근적외 밴드 교차보정)

  • Eunkyung Lee;Sujung Bae;Jae-Hyun Ahn;Kyeong-Sang Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1553-1563
    • /
    • 2023
  • The Geostationary Ocean Color Imager-II (GOCI-II) is a satellite designed for ocean color observation, covering the Northeast Asian region and the entire disk of the Earth. It commenced operations in 2020, succeeding its predecessor, GOCI, which had been active for the previous decade. In this study, we aimed to enhance the atmospheric correction algorithm, a critical step in producing satellite-based ocean color data, by performing cross-calibration on the GOCI-II near-infrared (NIR) band using the GOCI NIR band. To achieve this, we conducted a cross-calibration study on the top-of-atmosphere (TOA) radiance of the NIR band and derived a vicarious calibration gain for two NIR bands (745 and 865 nm). As a result of applying this gain, the offset of two sensors decreased and the ratio approached 1. It shows that consistency of two sensors was improved. Also, the Rayleigh-corrected reflectance at 745 nm and 865 nm increased by 5.62% and 9.52%, respectively. This alteration had implications for the ratio of Rayleigh-corrected reflectance at these wavelengths, potentially impacting the atmospheric correction results across all spectral bands, particularly during the aerosol reflectance correction process within the atmospheric correction algorithm. Due to the limited overlapping operational period of GOCI and GOCI-II satellites, we only used data from March 2021. Nevertheless, we anticipate further enhancements through ongoing cross-calibration research with other satellites in the future. Additionally, it is essential to apply the vicarious calibration gain derived for the NIR band in this study to perform vicarious calibration for the visible channels and assess its impact on the accuracy of the ocean color products.

Preliminary Study of the Tsunami Effect from the Great East Japan Earthquake using the World First Geostationary Ocean Color Imager (GOCI) (천리안 해색위성 GOCI를 이용한 일본 동부 지진해일 영향 연구)

  • Son, Young-Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.255-266
    • /
    • 2012
  • The enormous disaster (Friday nightmare) occurred at 14:46 (JST) (05:46 UTC) on 11 March 2011, officially named "the 2011 Tohoku Earthquake and Tsunami". To monitor the variations of the marine environment after the earthquake, we used chlorophyll and Rrs(555) of GOCI and MODIS ocean color satellite data during March ~ May 2011. Before the earthquake, chlorophyll and Rrs(555) were relatively low around the Sendai areas. After the earthquake;their concentration and intensity were suddenly increased along the coast and the water column was disturbed by the tsunami wave. The severe distortions influenced by the tsunami occurred at less than 30 m water depth and the variations in offshore were difficult to discern the effect of the tsunami. The disturbance by the tsunami was still remained in the terrestrial environment after one month. However the ocean environment returned to the former condition in almost two month later.

An Efficient Super Resolution Method for Time-Series Remotely Sensed Image (시계열 위성영상을 위한 효과적인 Super Resolution 기법)

  • Jung, Seung-Kyoon;Choi, Yun-Soo;Jung, Hyung-Sup
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.29-40
    • /
    • 2011
  • GOCI the world first Ocean Color Imager in Geostationary Orbit, which could obtain total 8 images of the same region a day, however, its spatial resolution(500m) is not enough to use for the accurate land application, Super Resolution(SR), reconstructing the high resolution(HR) image from multiple low resolution(LR) images introduced by computer vision field. could be applied to the time-series remotely sensed images such as GOCI data, and the higher resolution image could be reconstructed from multiple images by the SR, and also the cloud masked area of images could be recovered. As the precedent study for developing the efficient SR method for GOCI images, on this research, it reproduced the simulated data under the acquisition process of the remote sensed data, and then the simulated images arc applied to the proposed algorithm. From the proposed algorithm result of the simulated data, it turned out that low resolution(LR) images could be registered in sub-pixel accuracy, and the reconstructed HR image including RMSE, PSNR, SSIM Index value compared with original HR image were 0.5763, 52.9183 db, 0.9486, could be obtained.

A Preliminary Analysis on the Radiometric Difference Across the Level 1B Slot Images of GOCI-II (GOCI-II Level 1B 분할영상 간의 복사 편차에 대한 초기 분석)

  • Kim, Wonkook;Lim, Taehong;Ahn, Jae-hyun;Choi, Jong-kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1269-1279
    • /
    • 2021
  • Geostationary Ocean Color Imager II (GOCI-II), which are now operated successfully since its launch in 2020, acquires local area images with 12 Level 1B slot images that are sequentially acquired in a 3×4 grid pattern. The boundary areas between the adjacent slots are prone to discontinuity in radiance, which becomes even more clear in the following Level 2 data, and this warrants the precise analysis and correction before the distribution. This study evaluates the relative radiometric biases between the adjacent slots images, by exploiting the overlapped areas across the images. Although it is ideal to derive the statistics from humongous images, this preliminary analysis uses just the scenes acquired at a specific time to understand its general behavior in terms of bias and variance in radiance. Level 1B images of February 21st, 2021 (UTC03 = noon in local time) were selected for the analysis based on the cloud cover, and the radiance statistics were calculated only with the ocean pixels. The results showed that the relative bias is 0~1% in all bands but Band 1 (380 nm), while Band 1 exhibited a larger bias (1~2%). Except for the Band 1 in slot pairs aligned North-South, biases in all direction and in all bands turned out to have biases in the opposite direction that the sun elevation would have caused.

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification (천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증)

  • Kim, Minsang;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.

Study on the possibility of the aerosol and/or Yellow dust detection in the atmosphere by Ocean Scanning Multispectral Imager(OSMI)

  • Chung, Hyo-Sang;Park, Hye-Sook;Bag, Gyun-Myeong;Yoon, Hong-Joo;Jang, Kwang-Mi
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.409-414
    • /
    • 1998
  • To examine the detectability of the aerosol and/or Yellow dust from China crossing over the Yellow sea, three works carried out as follows , Firstly, a comparison was made of the visible(VIS), water vapor(WV), and Infrared(IR) images of the GMS-5 and NOAA/AVHRR on the cases of yellow sand event over Korea. Secondly, the spectral radiance and reflectance(%) was observed during the yellow sand phenomena on April, 1998 in Seoul using the GER-2600 spectroradiometer, which observed the reflected radiance from 350 to 2500 nm in the atmosphere. We selected the optimum wavelength for detecting of the yellow sand from this observation, considering the effects of atmospheric absorption. Finally, the atmospheric radiance emerging from the LOWTRAN-7 radiative transfer model was simulated with and without yellow sand, where we used the estimated aerosol column optical depth ($\tau$ 673 nm) in the Meteorological Research Institute and the d'Almeida's statistical atmospheric aerosol radiative characteristics. The image analysis showed that it was very difficult to detect the yellow sand region only by the image processing because the albedo characteristics of the sand vary irregularly according to the density, size, components and depth of the yellow sand clouds. We found that the 670-680 nm band was useful to simulate aerosol characteristics considering the absorption band from the radiance observation. We are now processing the simulation of atmospheric radiance distribution in the range of 400-900 nm. The purpose of this study is to present the preliminary results of the aerosol and/or Yellow dust detectability using the Ocean Scanning Multispectral Imager(OSMI), which will be mounted on KOMPSAT-1 as the ocean color monitoring sensor with the range of 400-900 nm wavelength.

  • PDF