• Title/Summary/Keyword: Ocean Color Imager

Search Result 161, Processing Time 0.039 seconds

INTEGRATED OPTICAL MODEL FOR STRAY LIGHT SUPPRESSION AND END-TO-END PERFORMANCE SIMULATION FOR GOCI

  • Ham, Sun-Jeong;Lee, Jae-Min;Youn, Heong-Sik;Kang, Gm-Sil;Kim, Seong-Hui;Kim, Sug-Whan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.274-277
    • /
    • 2006
  • KARI is currently developing a geostationary ocean color imager (GOCI) for COMS. We report the progress in integrated optical modeling and analysis for stray light suppression and the end-to-end instrument performance verification including in-orbit calibration. The Sun is modeled as the emitting light source and the selected area around Korean peninsular as the observation target that scatters the sun light towards GOCI in orbit. The optical ray tracing employing active geometric scaling was then used for precise characterization of the spatial and radiometric performance at the instrument focal plane. The analysis results show positive reduction in the simulated stray light level with the design improvement including baffles. It also indicates that the ray traced in-orbit radiometric performances are effective tools for the independent assessment of more traditional linear and quadratic equation based estimation of water leaving radiance. The concept of integrated GOCI optical model and the computational method are presented.

  • PDF

Global Patterns of Pigment Concentration, Cloud Cover, and Sun Glint: Application to the OSMI Data Collection Planning

  • Kim, Yong-Seung;Kang, Chi-Ho;Lim, Hyo-Suk
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.387-392
    • /
    • 1998
  • To establish a monthly data collection planning for the Ocean Scanning Multispectral Imager (OSMI), we have examined the global patterns of three impacting factors: pigment concentration, cloud cover, and sun glint. Other than satellite mission constraints (e.g., duty cycle), these three factors are considered critical for the OSMI data collection. The Nimbus-7 Coastal Zone Color Scanner (CZCS) monthly mean products and the International Satellite Cloud Climatology Project (ISCCP) monthly mean products (C2) were used for the analysis of pigment concentration and cloud cover distributions, respectively. And the monthly simulated patterns of sun glint were produced by performing the OSMI orbit prediction and the calculation of sun glint radiances at the top-of-atmosphere (TOA). Using monthly statistics (mean and/or standard deviation) of each factor in the above for a given 10$^{\circ}$ latitude by 10$^{\circ}$ longitude grid, we generated the priority map for each month. The priority maps of three factors for each month were subsequently superimposed to visualize the impact of three factors in all. The initial results illustrated that a large part of oceans in the summer hemisphere was classified into the low priority regions because of seasonal changes of clouds and sun illumination. Sensitivity tests were performed to see how cloud cover and sun glint affect the priority determined by pigment concentration distributions, and consequently to minimize their seasonal effects upon the data collection planning.

  • PDF

해양관측위성 2호 관측계획 초기분석 결과

  • An, Gi-Beom;O, Eun-Song;Jo, Seong-Ik;Yu, Ju-Hyeong;Park, Yeong-Je;An, Yu-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.226.2-226.2
    • /
    • 2012
  • 해양관측위성 2호(Geostationary Ocean Color Imager-II, GOCI-II)는 2017년에 미션이 종료되는 천리안 해양관측위성(GOCI)의 후속 위성으로, 2018년 발사 예정이다. 해양관측위성 2호는 천리안 해양관측위성과 동일한 정지궤도위성으로 동경 128.2도 적도상공에 위치하여 임무를 수행하게 된다. 총 13개의 분광밴드로 관측이 이루어지며, 370 nm ~ 900 nm(VIS/NIR) 11개, $0.9{\mu}m{\sim}1.3{\mu}m$ (SWIR) 2개의 분광밴드로 구성될 예정이다. 관측모드는 지역 관측(LA, Local Area)과 전구관측(Full Disk)으로 구성되며, 지역관측은 천리안 해양관측위성과 동일한 한반도 중심 $2,500km{\times}2,500km$ 영역에 대하여 천리안 대비 2배 향상된 공간해상도 250m로 관측할 예정이다. 관측 횟수는 기본적으로 기존 천리안 해양관측위성과 동일하게 낮시간 기준 1일 8회 관측이 이뤄지지만, 태양고도가 높은 하절기에는 1일 10회 관측이 수행된다. 전구관측은 $12,800km{\times}12,800km$ 이상의 영역을 관측하며 전지구적 관점의 해양 기후변화 관측 임무를 수행하며, 1일 1회 준실시간 형태로 관측이 진행된다. 본 연구에서는 정지궤도에서의 관측으로 인한 지역관측 영역 내에서 위치별 공간해상도의 차이, 탑재 예정 광검출기의 각 후보별 촬영 슬롯 개수의 변화와 지역관측 영역에서 계절에 따른 태양고도 변화 분석을 통한 1일 관측 횟수에 대해 논하고자 한다.

  • PDF

Land Cover Classification Map of Northeast Asia Using GOCI Data

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2019
  • Land cover (LC) is an important factor in socioeconomic and environmental studies. According to various studies, a number of LC maps, including global land cover (GLC) datasets, are made using polar orbit satellite data. Due to the insufficiencies of reference datasets in Northeast Asia, several LC maps display discrepancies in that region. In this paper, we performed a feasibility assessment of LC mapping using Geostationary Ocean Color Imager (GOCI) data over Northeast Asia. To produce the LC map, the GOCI normalized difference vegetation index (NDVI) was used as an input dataset and a level-2 LC map of South Korea was used as a reference dataset to evaluate the LC map. In this paper, 7 LC types(urban, croplands, forest, grasslands, wetlands, barren, and water) were defined to reflect Northeast Asian LC. The LC map was produced via principal component analysis (PCA) with K-means clustering, and a sensitivity analysis was performed. The overall accuracy was calculated to be 77.94%. Furthermore, to assess the accuracy of the LC map not only in South Korea but also in Northeast Asia, 6 GLC datasets (IGBP, UMD, GLC2000, GlobCover2009, MCD12Q1, GlobeLand30) were used as comparison datasets. The accuracy scores for the 6 GLC datasets were calculated to be 59.41%, 56.82%, 60.97%, 51.71%, 70.24%, and 72.80%, respectively. Therefore, the first attempt to produce the LC map using geostationary satellite data is considered to be acceptable.

Verification of CDOM Algorithms Based on Ocean Color Remote Sensing Data in the East Sea (동해에서 해색센서를 이용한 CDOM추정 알고리즘 검증)

  • Kim, Yun-Jung;Kim, Hyun-Cheol;Son, Young-Baek;Park, Mi-Ok;Shin, Woo-Chur;Kang, Sung-Won;Rho, Tae-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.421-434
    • /
    • 2012
  • Colored Dissolved Organic Matter (CDOM) is one of the important components of optical properties of seawater to determine ecosystem dynamics in a given marine area. The optical characteristics of CDOM may depend on the various ecosystem and environmental variables in the sea and those variables may vary region to region. Therefore, the retrieval algorithm for determining light absorption coefficient of CDOM ($a_{CDOM}$) using satellite remote sensing reflectance ($R_{rs}$) developed from other region may not be directly applicable to the other region, and it must be validated using an in-situ ground-truth observation. We have tested 6 known CDOM algorithms (three Semi-analytical and three Empirical CDOM algorithms) developed from other regions of the world ocean with laboratory determined in-situ values for the East Sea using field data collected during seven oceanographic cruises in the period of 2009~2011. Our field measurements extended from the coastal waters to the open oceanic type CASE-1 Waters. Our study showed that Quasi-Analytical Algorithm (QAA_v5) derived $a_{CDOM}$(412) appears to match in-situ $a_{CDOM}$(412) values statistically. Semi-analytical algorithms appeared to underestimate and empirical ones overestimated $a_{CDOM}$ in the East Sea. $a_{CDOM}$(412) value was found to be relatively high in the relatively high satellite derived-chlorophyll-a area. $a_{CDOM}$(412) value appears to be influenced by the amount of chlorophyll-a in seawater. The outcome of this work may be referenced to develop $a_{CDOM}$ algorithm for the new Korean Geostationary Ocean Color Imager (GOCI).

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.

A Comparative Study for Red Tide Detection Methods Using GOCI and MODIS

  • Oh, Seung-Yeol;Jang, Seon-Woong;Park, Won-Gyu;Lee, Jun-Ho;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.331-335
    • /
    • 2013
  • This study detected red tide areas using the existing Moderate-Resolution Imaging Spectroradiometer(MODIS) and Geostationary Ocean Color Imager(GOCI), and then compared the results between results of two sensors. The coasts of Jeollanam-do in the South Sea of Korea were set as the study area based on the red tide data which occurred on Aug. 26th, 2012. This study compared the results of sensors to detect red tides by using a satellite. In the results of analyzing MODIS by limiting it as chlorophyll concentration and the sea surface temperature which is considered to have red tides by the existing researches, it was possible to delete considerable amount of errors compared to the case of detecting red tides by using only chlorophyll while still there were differences from the range of red tides actually observed. In the results of GOCI by using empirical algorithm for detecting red tides, currently used by Korea Institute of Ocean Science & Technology(KIOST), it was possible to obtain more detailed results than MODIS. However, there was an area misjudged as red tides due to the influence of clouds. Also both MODIS and GOCI extracted red tides were not actually occurring, which might be because they were not able to perfectly distinguish red tides from turbid water in coastal areas with high turbidity.

Characteristic Response of the OSMI Bands to Estimate Chlorophyll a in the East China Sea

  • Suh, Young-Sang;Lee, Na-Kyung;Jang, Lee-Hyun;Hwang, Jae-Dong
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.208-208
    • /
    • 2002
  • Relationship between chlorophyll a in the East China Sea and spectral bands (412, 443,490, (510), 555, (676,765) in) of OSMI (Ocean Scanning Multi-Spectral Imager) including the profile multi-spectral radiometer (PRR-800) was studied. The values of remote sensing reflectance (Rrs) at the bands corresponding to the field chlorophyll a in α in the East China Sea were much higher than those in clear waters off California, USA. In case of the particle absorptions related to the chlorophyll a concentration at the spectral bands (440, 670 nm) were much higher in the East China Sea than the ones in the clean waters off California. The normalized water leaving radiances (nLw) at 412, 443, 490, 555 m of OSMI and field chlorophyll a in the East China Sea were correlated each other. According to the results, the relationship between field chlorophyll a and nLw 410 m in OSMI bands was the lowest, whereas that between the field chlorophyll a and nLw 555 nm in the bands was the highest. Reciprocal action between the field chlorophyll a and the band ratio of the OSMI bands (nLw410/nLw555, nLw443/nLw555, nLw490/nLw555) was also studied. Correlation between the chlorophyll a and the band ratio (nLw490/nLw555) was highest in the OSMI bands. Relationship between the chlorophyll a and the ratio (nLw443/nLw555) was higher than one in the nLw410/nLw555. The difference in the estimated chlorophyll α (mg/m3) between OSMI and SeaWiFS (Sea Viewing Wide Field-of-View Sensor) at the special observing stations in the northern eastern sea of Jeju Island in february 25, 2002 was about less than 0.3 mg/m3 within 3 hours. It is suggested that OC2 (ocean color chlorophyll 2 algorithm) be used to get much better estimation of chlorophyll α from OSMI than the ones from the updated algorithms as OC4.

  • PDF

KOMPSAT Data Processing System: An Overview and Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.357-365
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the KOrea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in late 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As a part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed, archived, and provided. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.

Simulation and Evaluation of the KOMPSAT/OSMI Radiance Imagery (다목적 실용위성 해색센서 (OSMI)의 복사영상에 대한 모의 및 평가)

  • 반덕로;김용승
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.131-146
    • /
    • 1999
  • The satellite visible data have been successfully applied to study the ocean color. Another ocean color sensor, the Ocean Scanning Multi-spectral Imager (OSMI) on the Korea Multi-Purpose Satellite (KOMPSAT) will be launched in 1999. In order to understand the characteristics of future OSMI images, we have first discussed the simulation models and procedures in detail, and produced typical patterns of radiances at visible bands by using radiative transfer models. The various simulated images of full satellite passes and Korean local areas for different seasons, water types, and the satellite crossing equator time (CET) are presented to illustrate the distribution of each component of radiance (i.e., aerosol scattering, Rayleigh scattering, sun glitter, water-leaving radiance, and total radiance). A method to evaluate the image quality and availability is then developed by using the characteristics of image defined as the Complex Signal Noise Ratio (CSNR). Meanwhile, a series of CSNR images are generated from the simulated radiance components for different cases, which can be used to evaluate the quality and availability of OSMI images before the KOMPSAT will be placed in orbit. Finally, the quality and availability of OSMI images are quantitatively analyzed by the simulated CSNR image. It is hoped that the results would be useful to all scientists who are in charge of OSMI mission and to those who plan to use the data from OSMI.