Communications for Statistical Applications and Methods
/
v.13
no.2
/
pp.369-378
/
2006
This Study focuses on the binary forecast of occurrence of heavy snow in Honam area based on the MOS(model output statistic) method. For our study daily amount of snow cover at 17 stations during the cold season (November to March) in 2001 to 2005 and Corresponding 45 RDAPS outputs are used. Logistic regression model and neural networks are applied to predict the probability of occurrence of Heavy snow. Based on the distribution of estimated probabilities, optimal thresholds are determined via true shill score. According to the results of comparison the logistic regression model is recommended.
Journal of The Korean Society of Agricultural Engineers
/
v.54
no.2
/
pp.37-46
/
2012
The change of rainfall pattern and hydrologic factors due to climate change increases the occurrence probability of agricultural reservoir water shortage. Water supply assessment of reservoir is usually performed current reservoir level compared to historical water levels or the simulation of reservoir operation based on the water budget analysis. Since each reservoir has the native property for watershed, irrigation district and irrigation water requirement, it is necessary to improve the assessment methods of agricultural reservoir water capability about water resources system. This study proposed a practical methods that water supply vulnerability assessment for an agricultural reservoir based on a concept of probabilistic reliability. The vulnerability assessment of water supply is calculated from probability distribution of water demand condition and water supply condition that influences on water resources management and reservoir operations. The water supply vulnerability indices are estimated to evaluate the performance of water supply on agricultural reservoir system, and thus it is recommended a more objective method to evaluate water supply reliability.
Simulating rare events, such as probability of cell loss in ATM networks, machine failure in highly reliable systems, requires huge simulation efforts due to the low chance of occurrence. Importance Sampling (IS) has been applied to accelerate the occurrence of rare events. However, it has a drawback of effective biasing scheme to make the estimator of IS unbiased. Adaptive Importance Sampling (AIS) employs an estimated sampling distribution of IS to the system of interest during the course of simulation. We propose Nonparametric Adaptive Importance Sampling (NAIS) technique which is nonparametrical version of AIS. We test NAIS to estimate a probability of rare event in M/M/1 queueing model. Comparing with classical Monte Carlo simulation, the computational efficiency and variance reductions gained via NAIS are substantial. A possible extension of NAIS regarding with random number generation is also discussed.
Tagging system is the system that allows internet users to assign new meta-data which is called tag to article, photo, video and etc. for facilitating searching and browsing of web contents. Tag cloud, a visual interface is widely used for browsing tag space. Tag cloud selects the tags with the highest frequency and presents them alphabetically with font size reflecting their popularity. However the conventional tag selection method includes known weaknesses. So, we propose a novel tag selection method Freshness, which helps to find fresh web contents. Freshness is the mean value of Kullback-Leibler divergences between each consecutive change of tag co-occurrence probability distribution. We collected tag data from three web sites, Allblog, Eolin and Technorati and constructed the system, 'Fresh Tag Cloud' which collects tag data and creates our tag cloud. Comparing the experimental results between Fresh Tag Cloud and the conventional one with data from Allblog, our one shows 87.5% less overlapping average, which means Fresh Tag Cloud outperforms the conventional tag cloud.
This study analyzed the effect of irrigation reservoirs, antecedent soil moisture conditions (AMC) and Huff time distribution on peak discharge using Monte Carlo simulation. The peak discharge was estimated for four different cases in combination of irrigation reservoir capacity, AMC, and Huff time distribution. Applying 100% reservoir capacity or AMC-III, the peak discharges corresponding return periods of 50~300 years were overestimated by 25~30% compared to those of cases that considered the probability of occurrence for individual condition. Applying the 3rd quantile huff distribution, the peak discharges were overestimated by 5% over the peak discharge that considered the probability of occurrence. The overall results indicated that the effect on the peak flood of Huff distribution was less than AMC and reservoir storage.
KSCE Journal of Civil and Environmental Engineering Research
/
v.14
no.3
/
pp.509-521
/
1994
This study is an effort to develop computer simulation model that produce precipitation patterns from stochastic model. A stochastic model is formulated for the process of daily precipitation with considering the sequences of wet and dry days and the precipitation amounts on wet days. This study consists of 2 papers and the process of precipitation occurrence is modelled by an alternate renewal process (ARP) in paper (I). In the ARP model for the precipitation occurrence, four discrete distributions, used to fit the wet and dry spells, were as follows; truncated binomial distribution (TBD), truncated Poisson distribution (TPD), truncated negative binomial distribution (TNBD), logarithmic series distribution (LSD). In companion paper (II) the process of occurrence is developed by Markov chain. The amounts of precipitation, given that precipitation has occurred, are described by a Gamma. Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Daily precipitation series model consists of two models, A-Wand A-G model, by combining the process of precipitation occurrence and a continuous probability distribution on the precipitation of wet days. To evaluate the performance of the simulation model, output from the model was compared with historical data of 7 stations in the Nakdong and Seomjin river basin. The results of paper (1) show that it is possible to design a model for the synthetic generation of IX)int precipitation patterns.
Journal of Korean Society of Industrial and Systems Engineering
/
v.37
no.4
/
pp.24-34
/
2014
In order to manage essential parts that are required for the repairable parts services performed at the military maintenance depots, the United States Air Force developed the Repairability Forecasting Model (RFM). In the RFM, if the requirements of the parts are assumed to follow the normal probability distribution after applying means from the past data to the replacement rate and lead times, the chance of the AWP (Awaiting Parts) occurring is 50%. In this study, to counter the uncertainties of requirements and lead times from the RFM, the safety level concept is considered. To obtain the safety level for requirements, the binomial probability distribution is applied, while the safety level for lead time is obtained by applying the normal probability distribution. After adding this concept, the improved RFM is renamed as the ARFM (Advanced RFM), and by conducting the numerical stimulation, the effectiveness of the ARFM, minimizing the occurrence of the AWP, is shown by increasing the efficiency of the maintenance process and the operating rate of the weapon system.
In 60 years when the double $CO_2$concentration is anticipated the average annual rainfall depth is expected to be increased by 5 10% due to global warming. However, in the water resources area the frequency change of meteorological extremes such as droughts and floods attracts more interests than the increase of annual rainfall amount. Even though recent frequent occurrences of this kind of meteorological extremes are assumed as an indirect proof of global warming, the prediction of its overall tendency has not yet been made. Thus, in this research we propose a possible methodology to be used for its prediction. The methodology proposed is based on the frequency distribution of daily rainfall be Todorovie and Woolhiser(1975), and Katz(1977), where the input parameters are modified to consider the change of monthly or annual rainfall depth and, thus, to result in the change of frequency distribution. We adopt two values(10mm, 50mm) as thresholds and investigate the change of occurrence probability due to the change monthly and annual rainfall depth. these changes do not directly indicate the changes of occurrence probability of floods and droughts, but it may still be a very useful information for their prediction. Finally, the changes of occurrence probability were found to be greater when considering the monthly rainfall rather than the annual rainfall, and those in rainy season than those in dry season.
Lee Hwa Woon;Lee Kwi Ok;Baek Seung-Joo;Kim Dong Hyeok
Journal of Korean Society for Atmospheric Environment
/
v.21
no.3
/
pp.303-313
/
2005
In this study, meteorological characteristics concerning the occurrence of fog are analyzed using 4-years $(2000\~2003)$ data at Chuncheon and the probability of prediction is investigated. From the analysis of meteorological characteristics, the fog at Chuncheon occurred before sunrise time and disappeared after that time and lasted for $2\~4$ hours. When fog occurred, on the whole, wind direction was blew the northerly and wind speed was below 2.1m/s. Especially, about $42\%$ of foggy day fell on the calm $(0\~0.2\;ms^{-1})$ conditions. The difference between air temperature and dew point temperature near the surface were mainly less than $2^{\circ}C$. For the lack of water surface temperature, the water surface temperature was calculated by using Water Quality River Reservoir System (WQRRS) and then it was used as the surface boundary condition of MM5. The numerical experiment was carried out for 2 days from 1300 LST on 14 October 2003 to 1300 LST on 16 October 2003 and fog was simulated at dawn on 15 and 16 October 2003. Simulated air temperature and dew point temperature indicate the similar tendency to observation and the simulated difference between air temperature and dew point temperature has also the similar tendency within $2^{\circ}C$. Thus, the occurrence of fog is well simulated in the terms of the difference between air temperature and dew point temperature. Horizontal distribution of the difference between air temperature and dew point temperature from the numerical experiment indicates occurrence, dissipation and lasting time of fog at Chuncheon. In Chuncheon, there is close correlation between the frequency of fog day and outflow from Soyang reservoir and high frequency of occurrence due to the difference between air and cold outlet water temperature.
Journal of Korean Society for Atmospheric Environment
/
v.4
no.2
/
pp.67-71
/
1988
To estimate the probability of short term concentration of air pollution using long term arithmetic average concentration, the procedure was developed and added to Texas Climatological Model version 2. In the procedure, such statistical characteristics that frequency distribution of short term concentration may be approximated by a lognormal distribution, were applied. This procedure is capable of estimating not only highest concentration for a variety of averaging times but also concentrations for arbitrary occurrence frequency. Evaluation of the procedure with the results of short term concentrations calculated by Texas Episodic Model version 8 using the meteorological data and emission data in Seoul shows that the procedure estimates concentrations fairly well for wide range of percentiles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.