• Title/Summary/Keyword: Occupational exposure limit

Search Result 215, Processing Time 0.032 seconds

주물사업장 주공정별 발생하는 분진의 석영함유량 및 크기분포 연구 (Analysis of Quartz Content and Particle Size Distribution of Airborne Dust from Selected Foundry Operations)

  • 피영규;노영만;이광묵;김형아;김용우;원정일;김현욱
    • 한국산업보건학회지
    • /
    • 제7권2호
    • /
    • pp.196-208
    • /
    • 1997
  • This study was performed to estimate quartz contents in the both bulk and airborne dust samples and to determine particle size distribution of airborne dust from the selected foundry operations. Total dust samples were collected by a 37mm cassette and respirable by a 10 mm nylon cyclone. Particle size distributions were determined by a Marple's 8-stage cascade impactor at the melting, molding, shakeout and finishing operations. The presence of elements in the dust samples were confirmed by the scanning electron microscopy equipped with the energy dispersive x-ray spectrometry. The quartz contents were estimated using the intensity of the absorption peak of quartz at 799 cm-l by the Fourie Transformed Infrared Spectroscopy (FTIR). The results were as follows: 1. The analysis of data from cascade Impactor showed bimodal distributions of particle size at the melting, molding and shakeout operations. Mass median aerodynamic diameters for the distributions determined by histogram were $0.48-1.65{\mu}m$ for small and $13.43-19.58{\mu}m$ for large modes. In the dust samples collected at the finishing operations, however, only a large mode of $18.89{\mu}m$ was found. 2. The percentages of total to respirable dust concentration calculated from the impactor data ranged from 42 % to 66 %. The average concentrations of respirable dust by cyclone were $0.85-1.28mg/m^3$ collected from the workers, and were $0.23-0.56mg/m^3$ from the areas surveyed. Dust concentrations of personal samples were statistically significantly higher than those of area samples. The highest dust concentration was obtained from the personal samples of the finishing operation. 3. The mean percentages of silicon and oxygen estimated by SEM-EDXA in the bulk samples ranged from 35.83 % to 36.02 % and from 39.93 %-41.64 %, respectively. 4. The average quartz contents estimated by FTIR in the respirable dust from personal samples ranged from 4.32 % to 5.36 % and 4.54 % to 4.70 % in the bulk samples. No statistical difference of quartz content was found between foundry operations. In this study, quartz content was quantified by FTIR. Although no statistically significant difference in quartz content between airborne and bulk, samples and between different foundry operations was found, it is recommended that quartz content in the individual sample of respirable dust be analyzed and the results be used either to select an applicable quartz limits or to calculate the exposure limit. Further studies, however, are needed to compare the results by FTIR and XRD since it is reported that the quartz content determined by FTIR is different from that by XRD.

  • PDF

조선업 용접작업장의 공기중 입자상물질 및 구성성분에 관한 연구 (An Evaluation on Airborne Particulate and It's Components in the Welding Workplace for the Ship Construction Industry)

  • 강용선;신중규;이송권;윤충식;임무혁;박만철;심상효
    • 한국산업보건학회지
    • /
    • 제17권3호
    • /
    • pp.245-253
    • /
    • 2007
  • This research was performed to evaluate the airborne personal concentration of hazardouse materials during the process of ship construction and surveyed from May 23 to June 30, 2007 in Kyungnam West Distirct, Korea. The subject was 94 ship construction workers exposed to welding fume and respirable particulate. The airborne concentrations of those were compared to Permissible Exposure Limit(PEL) from the Ministry of Labor in Korea. The airborne concentration of 23 samples(48.9%) of welding fumes was less than $5mg/m^3$, that of 16 (34.0%) was between 5 and $10mg/m^3$, and that of 8 (17.0%) was greater than $10mg/m^3$. The airborne concentration of 27 (57.4%) of respirable particulate masses was less than $5mg/m^3$ and the othere are greater than $5mg/m^3$. The welding fumes were identified containing the heavy metasl such as Fe, Mn, Zn, Mg, Ca, and Cu. The respirable particulates has similiar tendency with welding fumes in the component of heavy metals. But the concentration of Ca, Cu, Cr, and Ni turned out to be higher in welding fumes. Twenty (42.6%) of the 47 samples of welding fumes were exceeded PEL. In the heavy metals in welding fumes, ten (21.3%) of the 47 samples of Mn were exceeded PEL. Based on the results, the higher airborne hazardous materials were still exposed to wokers in ship construction process. It is suggested that the appropriate engineering control be applied to minimize the exposed cocnetration in ship building processes.

초등학생 가정을 대상으로 한 바이오에어로졸 노출과 아토피와의 연관성 평가 (Evaluation of Atopy and Its Possible Association with Indoor Bioaerosol Concentrations and Other Factors at the Residence of Children)

  • 하진실;정혜정;변혜정;윤충식;김양호;오인보;이지호;하권철
    • 한국환경보건학회지
    • /
    • 제37권6호
    • /
    • pp.406-417
    • /
    • 2011
  • Objectives: Exposure to bioaerosols in the indoor environment could be associated with a variety adverse health effects, including allergic disease such atopy. The objectives of this study were to assess children's exposure to bioaerosol in home indoor environments and to evaluate the association between atopy and bioaerosol, environmental, and social factors in Ulsan, Korea. Methods: Samples of viable airborne bacteria and fungi were collected by impaction onto agar plates using a Quick Take TM 30 and were counted as colony forming units per cubic meter of air (CFU/$m^3$). Bioaerosols were identified using standard microbial techniques by differential stains and/or microscopy. The environmental factors and possible causes of atopy based on ISAAC (International Study of Allergy and Asthma in Childhood) were collected by questionnaire. Results: The bioaerosol concentrations in indoor environments showed log-normal distribution (p < 0.01). Geometric mean (GM) and geometric standard deviation (GSD) of airborne bacteria and fungi in homes were 189.0 (2.5), 346.1(2.0) CFU/$m^3$, respectively. Indoor fungal levels were significantly higher than those of bacteria (p < 0.001). The concentration of airborne bacteria exceeded the limit recommended by the Korean Ministry of Environment, 800 CFU/$m^3$, in three out of 92 samples (3.3%) from 52 homes. The means of indoor to outdoor ratio (I/O) for airborne bacteria and fungi were 8.15 and 1.13, respectively. The source of airborne bacteria was not outdoors but indoors. GM of airborne bacteria and fungi were 217.6, 291.8 CFU/$m^3$ in the case's home and 162.0, 415.2 CFU/$m^3$ in the control's home respectively. The difference in fungal distributions between case and control were significant (p = 0.004) and the odds ratio was 0.996 (p = 0.027). Atopy was significantly associated with type of house (odds ratio = 1.723, p = 0.047) and income (odds ratio = 1.891, p = 0.041). Some of the potential allergic fungal genera isolated in homes were Cladosporium spp., Botrytis spp., Aspergillus spp., Penicillium spp., and Alternatia spp. Conclusions: These results suggest that there this should be either 'was little' meaning 'basically no significant association was found' or 'was a small negative' mean that an association was found but it was minor. It's a very improtant distinction. Association between airborne fungal concentrations and atopy and certain socioeconomic factors may affect the prevalence of childhood atopy.

환자 이송원의 피폭선량 측정 (A Measurement of Exposure Dose for Patient Transporter)

  • 송채림;이왕희;안성민
    • 한국방사선학회논문지
    • /
    • 제13권3호
    • /
    • pp.433-438
    • /
    • 2019
  • 의료기관에서는 환자의 진단 및 치료를 위해 방사선발생장치 및 방사성동위원소를 사용하고 있다. 환자이송원은 환자이송을 위해 불가피하게 방사선 관리구역에 출입하거나, 동위원소가 투여된 환자를 근거리에서 이송하는 등 일반인과 비교했을 때, 방사선에 노출될 확률이 높은 환경에서 업무를 수행한다. 따라서 환자이송원의 피폭 정도를 알아보고자 연구를 진행했다. 인천 A 종합병원에서 근무하고 있는 12명의 환자이송원을 대상으로 2019년 4월 1일부터 4월 30일까지 한 달 동안 선량계를 가슴에 패용하고, 누적된 선량을 측정했다. 사용된 선량계는 광자극발광선량계(OSLD), 선량판독은 OSLD Microstar Reading System을 사용했다. 한 달 동안 누적선량 측정 결과 심부선량은 평균 0.13 mSv, 표층선량은 평균 0.13 mSv로 측정되었고, 한 달 동안 누적된 선량에 12를 곱해 일 년 동안 업무를 수행할 시 받게 될 누적선량 예상치를 추정한 결과 심부선량은 평균 1.52 mSv, 표층선량은 평균 1.51 mSv로 나타났다. 환자이송원의 수시출입자 분류를 통해 피폭선량을 측정, 관리 하고, 교육훈련을 통해 방사선에 대한 방호지식을 높이며 건강진단을 통해 방사선장해 발생을 방지하기 위한 노력이 필요하다.

돈사 작업장 유형에 따른 암모니아와 황화수소의 실내농도 및 발생량에 관한 현장 조사 (Field Study of Emission Characteristics of Ammonia and Hydrogen Sulfide by Pig Building Types)

  • 김기연;박재범;김치년;이경종
    • 한국산업보건학회지
    • /
    • 제16권1호
    • /
    • pp.36-43
    • /
    • 2006
  • The principal aim of this field study was to determine the concentrations and emissions of gaseous contaminants such as ammonia and hydrogen sulfide in the different types of pig buildings in Korea and allow objective comparison between Korea and the other countries in terms of pig housing types. This field study was performed from May to June and from September to October in 2002. Pig buildings investigated in this research were selected in terms of three criteria; manure removal system, ventilation mode and growth stage of pig. Measurements of concentration and emission of ammonia and hydrogen sulfide in the pig buildings were done in 5 housing types and the visited farms were 15 sites per each housing type. Concentrations of ammonia and hydrogen sulfide were measured at three locations of the central alley in the pig building and emission rates of them were estimated by multiplying the average concentration($mg/m^3$) measured near the air outlet by the mean ventilation rate($m^3/h$) and expressed either per pig of liveweight 75kg(mg/h/pig) or per area($mg/h/m^2$). Concentrations of ammonia and hydrogen sulfide in the pig buildings were averaged to 7.5 ppm and 286.5 ppb and ranged from 0.8 to 21.4 ppm and from 45.8 to 1,235 ppb, respectively. The highest concentrations of ammonia and hydrogen sulfide were found in the mechanically ventilated buildings with slats; 12.1 ppm and 612.8 ppb, while the lowest concentrations of ammonia and hydrogen sulfide were found in the pig buildings with deep-litter bed system(2.2 ppm) and the naturally ventilated pig buildings with manure removal system by scraper(115.2 ppb), respectively(p<0.05). All the pig buildings were investigated not to exceed the threshold limit values(TLVs) of ammonia(25 ppm) and hydrogen sulfide(10 ppm). The mean emissions of ammonia and hydrogen sulfide per pig(75kg in terms of liveweight) and area($m^2$) from pig buildings were 250.2 mg/h/pig and 37.8 mg/h/pig and $336.3mg/h/m^2$ and $50.9mg/h/m^2$, respectively. The pig buildings with deep-litter bed system showed the lowest emissions of ammonia and hydrogen sulfide(p<0.05). However, the emissions of ammonia and hydrogen sulfide from the other pig buildings were not significantly different(p>0.05). Concentrations and emissions of ammonia and hydrogen sulfide were relatively higher in the pig buildings managed with deep-pit manure system with slats and mechanical ventilation mode than the different pig housing types. In order to prevent pig farm workers from adverse health effect caused by exposure to ammonia and hydrogen sulfide in pig buildings, they should wear the respirators during shift and be educated sustainably for the guideline related to occupational safety.

일부 신나의 구성성분과 공기중 증발에 관한 연구 (A Study on Composition of Solvent Thinners and Evaporation in the Air)

  • 조경이;백남원
    • 한국산업보건학회지
    • /
    • 제7권2호
    • /
    • pp.245-263
    • /
    • 1997
  • For twelve solvent thinners, evaporation rates of components were investigated and models to estimate the actual concentration have been evaluated. Also, the current ACGIH TLVs (Threshold Limit Values) for the concentration of organic mixtures have been adjusted. The results of this study are summarized as follows : 1. Airborne concentrations of solvent thinner components were related to their respective vapor pressure (r=0.96). On the other hand, there was no significant relation between the concentrations in the air of the thinner compounds and the original amount in liquid form. 2. Airborne concentrations of each chemical were estimated by temperature at $8.5{\pm}1$, $16.7{\pm}1$ and $31.5{\pm}2^{\circ}C$ with an air velocity of 1.5 m/s. The concentrations were increased by increasing temperature (p<0.05). The percentage of concentrations were proportionate to their respective percentage of vapor pressure. Among the chemicals studied, n-butyl acetate, n-butyl alcohol, m-xylene, p-xylene and o-xylene showed a clear relationship to temperature. 3. Airborne concentration of each chemical was estimated by air velocity at 0.05, 1.50 and 2.50 m/s, with a constant temperature at $17{\pm}2^{\circ}C$. The concentrations were increased by increasing air velocity (p<0.05). The percentage of concentrations were proportionate to their respective percentage of vapor pressure. Among the chemicals studied, n-butyl alcohol, m-xylene and p-xylene showed a clear relationship to velocity. 4. In estimating the concentrations of solvent thinners by temperature and air velocity, ACGIH TLVs for mixtures tended to be larger than the values obtained by ACGIH exposure index. It shows that ACGIH TLVs for mixtures are not adequate for evaluating the airborne concentration of thinners and other organic mixtures. 5. The evaporation rate of the thinners were compared to the theoretical equations of Hummel, Braun and Mackay. The Hummel and Braun methods were close to exposure index but Makay's showed an underestimated value. In order to see the accuracy of each three models, the SSE (Error Sum of Squares) calculated for Hummel's was 1.73, being the closest to the actual values. 6. Present ACGIH TLVs for mixtures are not appropriate evaluate industrial environments. In this study, a correction of TLVs using vapor pressure of respective components was suggested. In order to evaluate the corrected TLVs a paired t-test was performed. There was no significant difference between the exposure index and the concentration over suggested TLVs (p>0.05). Thus, this corrected TLVs seem appropriate in order to evaluate actual industrial workplaces organic chemical concentration in the air.

  • PDF

다중소자 열형광선량계에 의한 수정체 등가선량 평가의 적정성 연구 (A Feasibility Study on the Lens of Eye Dose Assessment Using the System of Multi-Element TLD)

  • 이나래;한승재;이병일;조건우
    • Journal of Radiation Protection and Research
    • /
    • 제37권2호
    • /
    • pp.96-102
    • /
    • 2012
  • 2011년 국제방사선방호위원회(ICRP)는 최근 역학 조사들을 근거로 방사선영향으로 발생할 수 있는 암 외 질환의 위험에 대한 권고를 개정하였다. 특히 수정체 조직반응의 발단선량을 0.5 Gy로 하향 조정하면서, 계획 피폭상황에서 직무 피폭 시 수정체 등가선량한도를 "정해진 5년 기간 동안 평균해서 연간 20 mSv, 그 중 어느 한 해에도 50 mSv를 초과하지 않아야 한다"로 권고하였다. 방사선작업종사자의 외부선량은 개인 열형광선량계(TLD)를 사용하여 감시하고 있으며 판독한 열형광소자별 반응도를 선량평가 알고리즘에 적용하면 개인의 수정체 등가선량을 구할 수 있다. 본 논문에서는 성능검사에 사용된 Harshaw TLD의 소자반응도를 사용하여 현재 사용 중인 알고리즘들에 의한 수정체 등가선량을 평가하였다. 그 결과 성능검사에 사용된 TLD의 소자반응도를 사용하여 수정체 등가선량을 평가한 경우 알고리즘 간의 상대오차는 최대 48.84% 내에 있는 것으로 나타났다.

CARI-6를 이용한 국제선 노선별 선량 및 항공승무원의 피폭선량 평가 (Calculation of Route Doses for Korean-based International Airline Routes using CARI-6 and Estimation of Aircrew Exposure)

  • 홍종호;권정완;정제호;이재기
    • Journal of Radiation Protection and Research
    • /
    • 제29권2호
    • /
    • pp.141-150
    • /
    • 2004
  • 특정 비행노선에서 우주선에 의한 누적선량을 계산하는 프로그램인 CARI-6를 이용하여 비행고도 우주선 방사선장의 선량률 변화 특성을 분석하고, 국적항공사에서 운행하는 전 국제선 노선에 대한 노선별 우주선 피폭선량을 산출하였다. 산출한 노선별 선량을 항공승무원의 비행스케쥴과 국민의 항공여행 통계에 적용하여 우리나라 항공승무원과 일반 여행객의 우주선에 의한 연간 피폭선량과 집단유효선량을 평가하였다. 평가 결과, 항공승무원의 피폭이 일반인의 선량한도인 연간 1 mSv를 초과하여 평균 2.62mSv로 다른 직업상 피폭을 받는 직군의 선량과 대등한 것으로 평가되었다. 따라서 항공승무원 적군의 우주선 피폭을 일종의 직업상 피폭으로 간주함이 타당함을 확인하였다. 나아가 국민의 해외여행으로 인한 집단선량은 2001년 기준으로 1,100만 명의 출입국자가 총 136man-Sv를 피폭한 것으로 나타났다. ICRP 92에서 양성자와 중성자의 방사선가중치를 변경한 결과를 반영하여 비행고도에서의 우주선 방사선장 정보가 수정될 경우 위의 평가 결과는 보완되어야 한다.

CO2 용접에서 용접변수의 변화에 따른 용접흄 제어방법에 관한 연구 (A Study on Control of Fume for Various Parameters in CO2 Welding)

  • 오광중;김현수;손병현;지해성
    • 한국산업보건학회지
    • /
    • 제8권1호
    • /
    • pp.76-87
    • /
    • 1998
  • The concentration of welding fume was measured by 221 welders themselves in chassis frame workplace of the manufactory from February, 1, 1996 to May, 31, 1997. Welding parameters were the welding current and the distance between helmet and arc. Those two optimum conditions were proposed by excess probability analysis using logistic regression, so the best position in the workplace was proposed considering two factors to control the welding fume. The results are as followings; 1) The excess proability of welding fume TLV was over 99% in above 260 Amperes of welding current and also in below 30cm of distanced between helmet and arc. 2) The equation from logistic regression analysis using SPSS/PC+5.02 had the welding current as a independent variable and the excess of welding fume TLV as a dependent variable (p<0.05). Logit(welding fume TLV) = 0.1296 ${\times}$ wlding currnet - 28.8750 3) The equation from logistic regression analysis using SPSS/PC+5.02 had the distance between helmet and arc as a independent variable and the excess of welding fume threshold limit value a, a dependent variable (p<0.05). Logit (welding fume TLV) = -0.6809 ${\times}$ distance between helmet and arc +25.1665 4) Considering both cases or 2) and 3). the result equation is following. (p<0.05). Logit (welding fume TLV) = 0.1346 ${\times}$ welding current -0.3859 ${\times}$ distance between helmet and arc -15.7382 5) The excess probability of welding fume threshold limit value was 100% in above 240 Ampere of welding current. Thus, below 220 Ampere can be suggested to reduce the 40% number of welders who have a excess welding fume threshold limit value. 6) The excess probability of welding fume TLV was 100% in below 34cm of distance between helmet and arc. Thus, over 38cm can be suggested to reduce the 33% number of welders who have a excess welding fume TLV. 7) Considering both 5) and 6) cases, first of all, the best welding current can be 200 Ampere to have a below 15% of welding fume excess probability for the welders who works in distance of 34-37cm. Secondly, to have a below 30% excess probability of welding fume TLV, the working distance must be over 38cm in 220 Ampere and 32cm in 200 Ampere. 8) To reduce the average exposure concentration of welding fume ($8.21{\pm}5.83mg/m^3$), the movable local exhaust system equipped with flexible hoods can be used.

  • PDF

용접사업장 근로자의 흄 및 금속 노출농도에 대한 평가와 혈중 금속 농도 (Airborne Concentrations of Welding Fume and Metals of Workers Exposed to Welding Fume)

  • 최호춘;김강윤;안선희;박화미;김소진;이영자;정규철
    • 한국산업보건학회지
    • /
    • 제9권1호
    • /
    • pp.56-72
    • /
    • 1999
  • Airborne concentrations of welding fumes in which 13 different metals such as Al, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sn, Ti, and Zn were analyzed were measured at 18 factories including automobile assembly and manufactures, steel heavy industries and shipyards. Air samples were collected by personal sampler at each worker's worksite(n=339). Blood levels of Cd, Cu, Fe, Mn, Pb and Zn were also measured from samples taken from 447 welders by atomic absorption spectrometry and compared with control values obtained from 127 non-exposed workers. The results were as follows ; 1. Among various welding types, $CO_2$ welding 70.2 % were widely used, shielded metal arc welding(SMAW) 22.1 % came next, and rest of them were metal inert gas(MIG) welding, submerged arc welding(SAW), spot welding(SPOT) and tungsten inert gas(TIG) welding. 2. Welding fume concentration was $0.92mg/m^3$($0.02{\sim}15.33mg/m^3$) at automobile assembly and manufactures, $4.10mg/m^3$($0.02{\sim}70.75mg/m^3$) at steel heavy industries and $5.59mg/m^3$($0.30{\sim}91.16mg/m^3$) at shipyards, respectively, showing significant difference among industry types. Workers exposed to high concentration of welding fumes above Korean Permissible Exposure Limit(KPEL) amounted to 7.9 % and 12.5 %, in $CO_2$ welding and in SMAW at automobile assembly and manufactures and 62.7 % in $CO_2$ welding, and 12.5 % in SMAW at shipyards, and 66.2 % in $CO_2$ welding and 70.6 % in SMAW at steel heavy industries. 3. Geometric mean of airborne concentration of each metal released from welding fumes was below one 10th of KPEL in all welding types. Percentage of workers, however, exposed to airborne concentration of metals above KPEL amounted to 16.8 % in Mn and 7.6 % in Fe in $CO_2$ welding; 37.5 % in Cu in SAW, 30 % in Cu in TIG; and 25 % in Pb in SPOT welding. As a whole, 76 Workers(22.4%) were exposed to high concentration of any of the metals above KPEL. 4. There were differences in airborne concentration of metals such as Al, Cd, Cr, Cu. Fe. Mn, Mo, Ni, Pb, Si, Sn, Ti and Zn by industry types. These concentrations were higher in shipyards and steel heavy industries than in automobile assembly and manufactures. Workers exposed to higher concentration of Pb above KPEI amounted to 7.4 % of workers(7/94) in automobile assembly and manufactures. In shipyards, 19.2 % of workers(19/99) were over-exposed to Mn and 7.1 % (7/99) to Fe above KPEL. In steel heavy industries, 14.4 %(21/146), 7.5 %(11/146) and 13 %(19/146) were over-exposed to Mn, Fe and Cu, respectively. As a whole, 76 out of 339 workers(22.4%) were exposed to any of the metals above KPEL. 5. Blood levels of Cd, Cu, Fe, Mn, Pb, and Zn in welders were $0.11{\mu}g/100m{\ell}$, $0.84{\mu}g/m{\ell}$, $424.4{\mu}g/m{\ell}$, $1.26{\mu}g/100m{\ell}$, $5.01{\mu}g/100m{\ell}$ and $5.68{\mu}g/m{\ell}$, respectively, in contrast to $0.09{\mu}g/100m{\ell}$, $0.70{\mu}g/m{\ell}$, $477.2{\mu}g/m{\ell}$, $0.73{\mu}g/100m{\ell}$, $3.14{\mu}g/100m{\ell}$ and $6.15{\mu}g/m{\ell}$ in non-exposed control groups, showing significantly higher values in welders but Fe and Zn.

  • PDF