• 제목/요약/키워드: Occlusal Stress

검색결과 184건 처리시간 0.048초

하악과두골절시 Arthrocentesis와 Lavage를 이용한 치험에 관한 연구 (TREATMENT OUTCOME OF MANDIBULAR CONDYLAR FRACTURE WITH ARTHROCENTESIS AND LAVAGE)

  • 윤옥병
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권4호
    • /
    • pp.286-289
    • /
    • 2002
  • In the treatment of mandibular condylar fractures, arthrocentesis, lavage and selective intermaxillary fixation were performed after closed reduction. In this lavage group, the physiotherapy performed for 3-6 months after injury. in control group, continuous intermaxillary fixation was done for 1-3 weeks, and physiotherapy followed in the same method of the lavage group. In the comparative study of the both groups, the following results are shown. 1. Compared to control group, the lavage group had a slightly superior result at range of motion, joint pain and occlusal deviation, from I day after arthrocentesis to 6 months after injury. 2. The significant differences between both groups were seen at range of motion and joint pain in 1 month after injury. 3. At 6 months after injury, the differences between both groups were not significant at range of motion, joint pain and occlusal deviation. From this study, in the mandibular condylar fracture, the arthrosentesis, lavage and selective intermaxillary fixation after closed reduction can improve symptoms such as joint pain and occlusal deviation, also increase range of motion. in this therapeutic way, intracapsular hemarthrosis which can cause TMJ ankylosis or dysfunction can be removed effectively. in addition, patient's discomfort such as swallowing disturbance, speech disturbance and emotional stress can be reduced signuficantly.

편측저작시 하악골 과두의 응력분포에 관한 삼차원 유한요소분석적 연군 (THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF THE MANDIBULAR CONDYLE DURING UNILATERAL CLENCHING)

  • 남도현;허성주;김광남
    • 대한치과보철학회지
    • /
    • 제35권3호
    • /
    • pp.517-534
    • /
    • 1997
  • It has been held that excessive mechanical forces to the osseous and soft tissues of the TMJ result in joint dysfunction. Understanding the stress pattern on TMJ is very important in TMJ research. But, it is very difficult to measure directly the biomechanical stress distribution in the TMJ when the mandible is loaded. Therefore, stress distribution in the TMJ during functional movement was studied through animal experiment or mathematical model. It was observed and compared the stress distribution occuring in the working and balancing condyle when lower right canine, lower right first molar and lower right second molar were clenched by the three dimensional finite element analysis. Also, stress distribution in the working and balancing condyles were observed and compared when $20^{\circ}$ forward and buccal bite forces were applied to the first molar. The results were as follows : 1. Stress distribution in the condyles during unilateral clenching of the first molar, second molar, canine showed no difference. In the working condyle, tensile force was concentrated on the lateral aspect of the condylar articular surface and condylar neck. And compressive force was concentrated on the anteromedial and lateral aspect of condyle. In the balancing condyle, tensile and compressive forces were concentrated on the lateral aspect of the condylar articular surface and stress transmission to the temporal bone was not observed. 2. When lateral forces were applied to the first molar, tensile forces were concentrated on the medial aspect of the condylar neck and condylar posterior surface in working and balancing condyle. Compressive force was concentrated on the anteromedial and lateral surface of the condyle and stress transmission to the temporal bone was not observed. 3. During unilateral clenching, stress in the working condyle decreased as the occlusal load moved posteriorly while the stress in the balancing condyle increased. when lateral force was applied to first molar, the incremental amount of stress was greater than vertical load. 4. During unilateral clenching, the average balancing/working condyle stress ratio was 2.52. There was a greater concentration of stress in the balancing condyle. The ratio increased as the occlusal load moved posteriorly and decreased considerably when lateral forces were applied to the first molar.

  • PDF

A three-dimensional finite element analysis of the relationship between masticatory performance and skeletal malocclusion

  • Park, Jung-Chul;Shin, Hyun-Seung;Cha, Jung-Yul;Park, Jong-Tae
    • Journal of Periodontal and Implant Science
    • /
    • 제45권1호
    • /
    • pp.8-13
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate the transfer of different occlusal forces in various skeletal malocclusions using finite element analysis (FEA). Methods: Three representative human cone-beam computed tomography (CBCT) images of three skeletal malocclusions were obtained from the Department of Orthodontics, Yonsei University Dental Hospital, Seoul, South Korea. The CBCT scans were read into the visualization software after separating bones and muscles by uploading the CBCT images into Mimics (Materialise). Two separate three-dimensional (3D) files were exported to visualize the solid morphology of skeletal outlines without considering the inner structures. Individual dental impressions were taken and stone models were scanned with a 3D scanner. These images were integrated and occlusal motions were simulated. Displacement and Von Mises stress were measured at the nodes of the FEA models. The displacement and stress distribution were analyzed. FEA was performed to obtain the 3D deformation of the mandibles under loads of 100, 150, 200, and 225 kg. Results: The distortion in all three skeletal malocclusions was comparable. Greater forces resulted in observing more distortion in FEA. Conclusions: Further studies are warranted to fully evaluate the impact of skeletal malocclusion on masticatory performance using information on muscle attachment and 3D temporomandibular joint movements.

Lingualized Occlusion에 의한 하악응력의 광탄성학적 분석 (PHOTOELASTIC ANALYSIS OF MANDIBULAR STRESSES INDUCED BY LINGUALIZED OCCLUSION)

  • 김상수;정재헌
    • 대한치과보철학회지
    • /
    • 제26권1호
    • /
    • pp.153-169
    • /
    • 1988
  • There is a little scientific documentation reporting the stress, distribution to the edentulous mandible by different concepts of occlusal scheme. So, this study was to investigate the hypothesis that the magnitude and distribution of the occlusal stresses, transmitted through a mandibular complete denture base to the edentulous mandible, would be influenced by the lingualized occlusion. This investigation was performed to analyze the stresses induced in a three-dimensional photoelastic edentulous mandible, when a load is applied to the denture arranged into lingualized occlusion in centric relation, lateral and protrusive functional position. The mounted denture on a Dentatus Type ARO articulator was loaded in a pure vertical direction with 15kgs on the center of articulator in each case and the stresses were frozen into epoxy edentulous model at $127^{\circ}C$ in the stress freezing furnace. The stress-frozen epoxy models were sliced with diamond disc saw into 4mm thick. The slices were examined with a circular polariscope. The results were as follows: 1. In centric relation, the stresses were low at anteriors, and gradually increase to the premolar, molar area and highest at the first molar and gradually decrease from the second molar and lowest at the retromolar pad region. The lingual side showed higher stresses than labiobuccal side. 2. In lateral functional position, the working side showed higher stresses than the balancing side. In working side, the lingual side showed higher stresses than the buccal side and in balancing side, the buccal side showed higher stresses than the lingual side. 3. In protrusive position, stress distribution was symmetrical on the posteriors and the stresses were concentrated at the labial side of the anteriors.

  • PDF

경사진 임플란트 고정체의 응력 분석 (Stress analysis on the implant fixture with the angulated placement)

  • 김창현;강재석;부수붕;오상호;안옥주;강동완
    • 구강회복응용과학지
    • /
    • 제20권2호
    • /
    • pp.71-81
    • /
    • 2004
  • The purpose of this study was to compare the distributing pattern of stress on the finite element models of two units implant prosthesis with one angulated placement of two implant fixtures. The two unit implant crowns simulated to mandibular first and second molars were made. The two kinds of finite element models were designed according to angulation of fixture ($4.0mm{\times}11.5mm$) : Model 1($15^{\circ}$ buccally angulated placement of one fixture on second molar area), Model 2($15^{\circ}$ lingually angulated placement of one fixture on second molar area). Axial loads of 200N were applied to the center of central fossa and to distance of 2mm and 4mm apart from the center of central fossa. Von-Mises stresses were recorded and compared in the fixtures, and buccolingual section of implants. The results were as follows: 1. Under axial loading at the central fossa, the stress was distributed along the straight fixture except apical portion, while on buccally or lingually angulated placement, the highest stresses were concentrated in the neck portion on the opposite side of the angulated fixture. 2. With offset distance increasing, the stresses were concentrated greater in buccal neck of lingually angulated fixture than in lingual neck of buccally angulated fixture. From the above results, in designing of the occlusal scheme for implant prosthesis with the angulated fixture, occlusal contacts should be placed to distribute stress axially in maximum intercuspation and to avoid offset force during eccentric movements.

Stress distribution in premolars restored with inlays or onlays: 3D finite element analysis

  • Yang, Hongso;Park, Chan;Shin, Jin-Ho;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Chung, Hyunju
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권3호
    • /
    • pp.184-190
    • /
    • 2018
  • PURPOSE. To analyze stress distribution in premolars restored with inlays or onlays using various materials. MATERIALS AND METHODS. Three-dimensional maxillary premolar models of abutments were designed to include the following: 1) inlay with O cavity (O group), 2) inlay with MO cavity (MO group), 3) inlay with MOD cavity (MOD group), and 4) onlay (ONLAY group). A restoration of each inlay or onlay cavity was simulated using gold alloy, e.max ceramic, or composite resin for restoration. To simulate masticatory forces, a total of 140 N static axial force was applied onto the tooth at the occlusal contact areas. A finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. RESULTS. Maximum von Mises stress values generated in the abutment teeth of the ONLAY group were ranged from 26.1 to 26.8 MPa, which were significantly lower than those of inlay groups (O group: 260.3-260.7 MPa; MO group: 252.1-262.4 MPa; MOD group: 281.4-298.8 MPa). Maximum von Mises stresses generated with ceramic, gold, and composite restorations were 280.1, 269.9, and 286.6 MPa, respectively, in the MOD group. They were 252.2, 248.0, 255.1 MPa, respectively, in the ONLAY group. CONCLUSION. The onlay design (ONLAY group) protected tooth structures more effectively than inlay designs (O, MO, and MOD groups). However, stress magnitudes in restorations with various dental materials exhibited no significant difference among groups (O, MO, MOD, ONLAY).

The influence of various core designs on stress distribution in the veneered zirconia crown: a finite element analysis study

  • Ha, Seung-Ryong;Kim, Sung-Hun;Han, Jung-Suk;Yoo, Seung-Hyun;Jeong, Se-Chul;Lee, Jai-Bong;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권2호
    • /
    • pp.187-197
    • /
    • 2013
  • PURPOSE. The purpose of this study was to evaluate various core designs on stress distribution within zirconia crowns. MATERIALS AND METHODS. Three-dimensional finite element models, representing mandibular molars, comprising a prepared tooth, cement layer, zirconia core, and veneer porcelain were designed by computer software. The shoulder (1 mm in width) variations in core were incremental increases of 1 mm, 2 mm and 3 mm in proximal and lingual height, and buccal height respectively. To simulate masticatory force, loads of 280 N were applied from three directions (vertical, at a $45^{\circ}$ angle, and horizontal). To simulate maximum bite force, a load of 700 N was applied vertically to the crowns. Maximum principal stress (MPS) was determined for each model, loading condition, and position. RESULTS. In the maximum bite force simulation test, the MPSs on all crowns observed around the shoulder region and loading points. The compressive stresses were located in the shoulder region of the veneer-zirconia interface and at the occlusal region. In the test simulating masticatory force, the MPS was concentrated around the loading points, and the compressive stresses were located at the 3 mm height lingual shoulder region, when the load was applied horizontally. MPS increased in the shoulder region as the shoulder height increased. CONCLUSION. This study suggested that reinforced shoulder play an essential role in the success of the zirconia restoration, and veneer fracture due to occlusal loading can be prevented by proper core design, such as shoulder.

임플랜트 지지 보철물에서 고정체의 식립위치와 각도에 따른 삼차원 유한요소법적 응력분석에 관한 연구 (THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO THE DIFFERENT FIXTURE LOCATIONS AND ANGULATIONS)

  • 박원희;이영수
    • 대한치과보철학회지
    • /
    • 제43권1호
    • /
    • pp.61-77
    • /
    • 2005
  • Statement of problem. The implant prosthesis has been utilized in various clinical cases thanks to its increase in scientific effective application. The relevant implant therapy should have the high success rate in osseointegration, and the implant prosthesis should last for a long period of time without failure. Resorption of the peri-implant alveolar bone is the most frequent and serious problem in implant prosthesis. Excessive concentration of stress from the occlusal force and biopressure around the implant has been known to be the main cause of the bone destruction. Therefore, to decide the location and angulation of the implant is one of the major considering factors for the stress around the implant fixture to be dispersed in the limit of bio-capacity of load support for the successful and long-lasting clinical result. Yet, the detailed mechanism of this phenomenon is not well understood. To some extent, this is related to the paucity of basic science research. Purpose. The purpose of this study is to perform the stress analysis of the implant prosthesis in the partially edentulous mandible according to the different nature locations and angulations using three dimensional finite element method. Material and methods, Three 3.75mm standard implants were placed in the area of first and second bicuspids, and first molar in the mandible Thereafter, implant prostheses were fabricated using UCLA abutments. Five experimental groups were designed as follows : 1) straight placement of three implants, 2) 5$^{\circ}$ buccal and lingual angulation of straightly aligned three implants, 3) 10$^{\circ}$ buccal and lingual angulation of straightly aligned three implants. 4) lingual offset placement of three implants, and 5) buccal offset placement of three implants. Average occlusal force with a variation of perpendicular and 30$^{\circ}$ angulation was applied on the buccal cusp of each implant prosthesis, followed by the measurement of alteration and amount of stress on each configurational implant part and peri-implant bio-structures. The results of this study are extracted from the comparison between the distribution of Von mises stress and the maximum Von mises stress using three dimensional finite element stress analysis for each experimental group. Conclusion. The conclusions were as follows : 1. Providing angulations of the fixture did not help in stress dispersion in the restoration of partially edentulous mandible. 2. It is beneficial to place the fixture in a straight vertical direction, since bio-pressure in the peri-implant bone increases when the fixture is implanted in an angle. 3. It is important to select an appropriate prosthodontic material that prevents fractures, since the bio-pressure is concentrated on the prosthodontic structures when the fixture is implanted in an angle. 4. Offset placement of the fixtures is effective in stress dispersion in the restoration of partially edentulous mandible.

이갈이의 진단과 치료 (Diagnosis and Management of Bruxism)

  • 고홍섭
    • 수면정신생리
    • /
    • 제12권1호
    • /
    • pp.23-26
    • /
    • 2005
  • Bruxism is defined as 'diurnal or nocturnal parafunctional activity including clenching, bracing, gnashing, and grinding of the teeth'. Bruxism and clenching are two of the most common contributing factors in patients with temporomandibular disorders and craniofacial pain disorders. Even though many studies report the high prevalence of bruxism, its cause is still not clear. Occlusal interference has been regarded as a major etiologic factor. Nowadays, psychological stress and sleeping disorders are generally regarded as major possible etiologic factors. More than likely, the cause is multifactoral and overlapping, which makes it difficult for the practitioner to apply comprehensive and effective management strategies. Although dentists and psychologists generally believe that effective treatment is best achieved with a better understanding of the etiology of a given disorder, for now treatment for this type of disorder must proceed without a clear understanding of etiology. To overcome this obstacle, evidence-based comprehensive management protocols based on accumulated scientific findings should be provided. In this presentation, epidemiology, etiology, and the characteristics of bruxism are reviewed. Diagnostic procedures and management strategies focused on occlusal appliances and behavioral approaches are also discussed.

  • PDF

Relationship between Stiffness of Restorative Material and Stress Distribution for Notch-shaped Non-carious Cervical Lesions

  • Kim, Kwang-Hoon;Park, Jeong-Kil;Son, Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.64-67
    • /
    • 2008
  • This study investigated the influence of composite resins with different elastic moduli and occlusal loading conditions on the stress distribution of restored notch-shaped non-carious cervical lesions (NCCL) using 3D finite element analysis. Two different materials, Tetric Flow and Z100, were used as representative flowable hybrid resins for the restoration of NCCL. A static point load of 500 N was applied at the buccal and palatal cusps. The ratios of stress reduction to energy dissipation were better in the compressive state than the tensile state regardless of the restorative material. The total dissipation ratios for Tetric Flow were 1.5% and 4.2% larger than those for Z100 under compression and tension, respectively. Therefore, tensile stress poses more of a risk for tooth fracture, and Tetric Flow is a more appropriate material for restoration.