• 제목/요약/키워드: Obstacle problem

검색결과 357건 처리시간 0.02초

Studies on the Optimal Location of Retail Store Considering the Obstacle and the Obstacle-Overcoming Point

  • Minagawa, Kentaro;Sumiyoshi, Kazushi
    • Industrial Engineering and Management Systems
    • /
    • 제3권2호
    • /
    • pp.129-133
    • /
    • 2004
  • Studies on the optimal location of retail store have been made in case of no obstacle(Minagawa etal. 1999). This paper deals with the location problem of retail store considering obstacles (e.g. rivers, railways, highways, etc.) and obstacle-overcoming points (e.g. bridges, railway crossings, zebra crossings, overpasses, etc.). We assume that (1) commercial goods dealt here are typically convenience goods, (2) the population is granted as potential demand, (3) the apparent demand is a function of the maximum migration length and the distance from the store to customers, (4) the scale of a store is same in every place and (5) there is no competitor. First, we construct the basic model of customers' behavior considering obstacles and obstacle-overcoming points. Analyzing the two dimensional model, the arbitrary force attracting customers is represented as a height of a cone where the retail store is located on the center. Second, we formulate the total demand of customers and determine the optimal location that maximizes the total demand. Finally, the properties of the optimal location are investigated by simulation.

레이저레이더 센서를 이용한 철도 건널목 지장물 검지 알고리즘 개발 (Algorithm Development of Level Crossing Obstacle Detection using Laser Radar Sensor)

  • 김영준;백종현;최규형
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1813-1819
    • /
    • 2013
  • Existing level crossing obstacle detecting system was installed using a laser beam. Level crossing obstacle detecting system using a laser beam that has been a problem in relation to safety and maintainability failure according to weather conditions. We proposed laser radar level crossing obstacle detecting system as a way to overcome problem, and we developed an algorithm for this. Level crossing obstacle detecting system using a laser radar sensor algorithm is robust to external environment and a shadow zone does not exist. Sensor part of the laser radar level crossing obstacle detecting system of these is made up by the image processing unit and laser radar sensor, it operations by receiving train entering information from the control unit. In this paper, we proposed a detecting algorithm with calculation of the size of the laser radar sensor. Based on this, we were performance test on the basis of the scenario by making a prototype. In the future, laser radar level crossing obstacle detecting system to ensure the safety and reliability through the field test.

이동 로봇의 지역 장애물 회피를 위한 새로운 방법 (A New Method for Local Obstacle Avoidance of a Mobile Robot)

  • 김성철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.88-93
    • /
    • 1998
  • This paper presents a new solution approach to moving obstacle avoidance problem for a mobile robot. A new concept avoidability measure(AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function(VDF) is derived as a function of the distance from the obstacle to the robot and outward speed of the obstacle relative to the robot. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terns of the VDF, an artificial potential field is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived form the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid moving obstacles in real time. Since the algorithm considers the mobility of the obstacle as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

레이저 스캐너를 이용한 장애물 탐색 및 분리 알고리즘 개발 (Obstacle Detection and Classification Algorithm using a Laser Scanner)

  • 이기룡;홍석교;좌동경
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.677-685
    • /
    • 2008
  • This paper proposes algorithm for the obstacle detection and classification using a single laser scanner. In a measurement data from a laser scanner, there exist points with large differential value called singular points, which can be used to obtain the boundary of an obstacle such that obstacle information can be analyzed. On the other hand, measurement data include a lot of measurement error, which makes it difficult to analyze the accurate obstacle information. To solve this problem, the least square estimation algorithm is used to obtain the accurate information using a single laser scanner, by compensation for the measurement error. This algorithm can be used for the effective obstacle avoidance of mobile robots, and the experimental results are included to demonstrate the effectiveness of the propose algorithm.

충돌 회피 가능도를 이용한 로봇의 이동 장애물 회피 (Moving obstacle avoidance of a robot using avoidability measure)

  • 고낙용;이범희
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.169-178
    • /
    • 1997
  • This paper presents a new solution approach to moving obstacle avoidance problem of a robot. A new concept, avoidability measure(AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function(VDF) is derived as a function of three state variables: the distance from the obstacle to the robot, outward speed of the obstacle relative to the robot, and outward speed of the robot relative to the obstacle. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terms of the VDF, an artificial potential is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived from the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid a moving obstacle in real time. Since the algorithm considers the mobility of the obstacle and robot as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

A New Technique to Escape Local Minimum in Artificial Potential Field Based Path Planning

  • Park, Min-Gyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1876-1885
    • /
    • 2003
  • The artificial potential field (APF) methods provide simple and efficient motion planners for practical purposes. However, these methods have a local minimum problem, which can trap an object before reaching its goal. The local minimum problem is sometimes inevitable when an object moves in unknown environments, because the object cannot predict local minima before it detects obstacles forming the local minima. The avoidance of local minima has been an active research topic in the potential field based path planing. In this study, we propose a new concept using a virtual obstacle to escape local minima that occur in local path planning. A virtual obstacle is located around local minima to repel an object from local minima. We also propose the discrete modeling method for the modeling of arbitrary shaped objects used in this approach. This modeling method is adaptable for real-time path planning because it is reliable and provides lower complexity.

초음파센서 기반 자율주행 로봇의 장애물 회피에 관한 연구 (A Study on Obstacle Avoidance Technology of Autonomous Treveling Robot Based on Ultrasonic Sensor)

  • 황원준
    • 한국산업융합학회 논문집
    • /
    • 제18권1호
    • /
    • pp.30-36
    • /
    • 2015
  • This paper presents the theoretical development of a complete navigation problem of a nonholonomic mobile robot by using ultrasonic sensors. To solve this problem, a new method to computer a fuzzy perception of the environment is presented, dealing with the uncertainties and imprecision from the sensory system and taking into account nonholonomic constranits of the robot. Fuzzy perception, fuzzy controller are applied, both in the design of each reactive behavior and solving the problem of behavior combination, to implement a fuzzy behavior-based control architecture. The performance of the proposed obstacle avoidance robot controller in order to determine the exact dynamic system modeling system that uncertainty is difficult for nomadic controlled robot direction angle by ultrasonic sensors throughout controlled performance tests. In additionally, this study is an in different ways than the self-driving simulator in the development of ultrasonci sensors and unmanned remote control techniques used by the self-driving robot controlled driving through an unmanned remote controlled unmanned realize the performance of factory antomation.

전위장을 이용한 로봇 경로계획의 구조적 Local minimum을 극복하는 경로계획 방법 (A trajectory plannings avoiding structural local minimum problem in robot path planning using potential field)

  • 남헌성;이지홍;류준
    • 전자공학회논문지B
    • /
    • 제33B권9호
    • /
    • pp.13-23
    • /
    • 1996
  • When artificial potential field approach is used to avoid obstacle, the problem can be occurred in case that manipulator selects the path which across over an obstacle among paths. In thiscase manipulator can't reach the desired goal form obstacle. This problem is a case of structual local minimum. so this paper proposes the method to solve structual local minimum in this case. The method is that the manipulator goes via temporary goal. This paper proposes that visual region concept to select the temporary goal. The temporary goal is selected on the border of the visual region. To prove its effectiveness, two simulation examples are done by two link manipulator in two dimension and by three link manipulator in three dimension.

  • PDF

전기식 도어시스템의 고장건수 및 지연시간을 활용한 열차운행장애 분석 (Analysis of Train Operation Obstacle Using Number of Failures and Delay Time of Electric Door System)

  • 이본형;김두현;김성철
    • 한국안전학회지
    • /
    • 제35권1호
    • /
    • pp.12-17
    • /
    • 2020
  • This paper analyzes functions of component parts of D-Urban Railway's door system along with operation obstacle risks on frequency(the number of occurrences/year) and severity(delay time/the number of occurrences). Based on this, the paper presents improvements and current system's problems after obstacle risks of EMU and door system are appled. The obstacle of door system causes corrosion of main parts such as DCU due to heat problem of operation environment, problems of maintenance methods and deterioration. DCUs on PCBs with more than 50% pattern corrosion cause problems. Even though the number of door system's obstacle occurrences for the last 5 years is 42, along with 104 minutes of operation obstacle, EMU operation obstacle risk is low(Level 1), which indicates there is limit in matrix of railway risks presented by the standard of railway safety management system. Therefore, it is necessary to have railway risk matrix suitable for the field. Finally, the paper deducts the obstacle risks through frequency and severity. Since 2017 when the risks of EMU and door system's obstacle, that of EMU has been 24(47% reduced) and that of door system has been average 9.5 per year(23% reduced).

레이저 스캐닝 센서를 이용한 이동 로봇의 지역 장애물 회피 방법 (Local Obstacle Avoidance Method of Mobile Robots Using LASER scanning sensor)

  • 김성철;강원찬;김동옥;서동진;고낙용
    • 전기학회논문지P
    • /
    • 제51권3호
    • /
    • pp.155-160
    • /
    • 2002
  • This paper focuses on the problem of local obstacle avoidance of mobile robots. To solve this problem, the safety direction section search algorithm is suggested. This concept is mainly composed with non-collision section and collision section from the detecting area of laser scanning sensor. Then, we will search for the most suitable direction in these sections. The proposed local motion planning method is simple and requires less computation than others. An environment model is developed using the vector space concept to determine robot motion direction taking the target direction, obstacle configuration, and robot trajectory into account. Since the motion command is obtained considering motion dynamics, it results in smooth and fast as well as safe movement. Using the mobile base, the proposed obstacle avoidance method is tested, especially in the environment with pillar, wall and some doors. Also, the proposed autonomous motion planning and control algorithm are tested extensively. The experimental results show the proposed method yields safe and stable robot motion through the motion speed is not so fast.