• Title/Summary/Keyword: Obstacle information

Search Result 785, Processing Time 0.022 seconds

An Improved Map Construction for Mobile Robot Using Fuzzy Logic and Genetic Algorithm (퍼지 논리와 진화알고리즘을 이용한 자율이동로봇의 향상된 지도 작성)

  • Jin Kwang-Sik;Ahn Ho-Gyun;Yoon Tae-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.330-336
    • /
    • 2005
  • Existing Bayesian update method using ultrasonic sensors only for mobile robot map building has a problem of the quality of map being degraded in the wall with irregularity, which is caused by the wide beam distribution. For improving this problem, an infrared sensors aided map building method is presented in this paper. Information of obstacle at each region in ultrasonic sensor beam is acquired using the infrared sensors and the information is used to get the confidence of ultrasonic sensor information via fuzzy inference system and genetic algorithm. Combining the resulting confidence with the result of Bayesian update method, an improve map is constructed. The proposed method showed good results in the simulations and experiments.

Automatic Guided Vehicle Design and Implementation for Intelligent Unmanned Mobile systems (지능형 무인 이동 시스템을 위한 Automatic Guided Vehicle 설계 및 구현)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 2014
  • In this study, the unmanned vehicle to develop a preliminary step, we were facilities for Automated Guided Vehicle (AGV) simulator is designed and implemented. Industry is increasingly the more advanced automation and management systems need to be efficient. These studies are at least 24-hour continuous unmanned vehicles and personnel can result in reduction of labor costs. In addition, safety accidents can be minimized in the industry as an effect of intelligent AGV is essential. This study is the initial step for the development of AGV. manufactured simulator to Simulation and drives the performance of the system is evaluated. The configuration of the simulator, ultrasonic sensors, infrared sensors, and using the obstacle were to follow a given path. In addition, two-way communication between the host computer and the main processor that was. communication method that IEE802.11 meets the standard is applied to high-speed wireless LAN systems, each of the sensor information is calculated. AGV having a drive shaft 4 of the four wheels are respectively independent structure. AGV's main processor is driven using a high-performance DSP, and the controller controls the steering device of the load could be significantly reduced.

Efficient Calculation for Decision Feedback Algorithms Based on Zero-Error Probability Criterion (영확률 성능기준에 근거한 결정궤환 알고리듬의 효율적인 계산)

  • Kim, Namyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.247-252
    • /
    • 2015
  • Adaptive algorithms based on the criterion of zero-error probability (ZEP) have robustness to impulsive noise and their decision feedback (DF) versions are known to compensate effectively for severe multipath channel distortions. However the ZEP-DF algorithm computes several summation operations at each iteration time for each filter section and this plays an obstacle role in practical implementation. In this paper, the ZEP-DF with recursive gradient estimation (RGE) method is proposed and shown to reduce the computational burden of O(N) to a constant which is independent of the sample size N. Also the weight update of the initial state and the steady state is a continuous process without bringing about any propagation of gradient estimation error in DF structure.

Adaptive Success Rate-based Sensor Relocation for IoT Applications

  • Kim, Moonseong;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3120-3137
    • /
    • 2021
  • Small-sized IoT wireless sensing devices can be deployed with small aircraft such as drones, and the deployment of mobile IoT devices can be relocated to suit data collection with efficient relocation algorithms. However, the terrain may not be able to predict its shape. Mobile IoT devices suitable for these terrains are hopping devices that can move with jumps. So far, most hopping sensor relocation studies have made the unrealistic assumption that all hopping devices know the overall state of the entire network and each device's current state. Recent work has proposed the most realistic distributed network environment-based relocation algorithms that do not require sharing all information simultaneously. However, since the shortest path-based algorithm performs communication and movement requests with terminals, it is not suitable for an area where the distribution of obstacles is uneven. The proposed scheme applies a simple Monte Carlo method based on relay nodes selection random variables that reflect the obstacle distribution's characteristics to choose the best relay node as reinforcement learning, not specific relay nodes. Using the relay node selection random variable could significantly reduce the generation of additional messages that occur to select the shortest path. This paper's additional contribution is that the world's first distributed environment-based relocation protocol is proposed reflecting real-world physical devices' characteristics through the OMNeT++ simulator. We also reconstruct the three days-long disaster environment, and performance evaluation has been performed by applying the proposed protocol to the simulated real-world environment.

A Study on the Improvement of Driving of Educational Robots with OID Sensors (OID센서로 주행하는 교육용 로봇의 주행 개선을 위한 연구)

  • Song, Hyun-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.549-557
    • /
    • 2021
  • In this research, we will use the existing OID sensor environment for smart robots, which are a type of educational robot, but we would like to propose that the problem of running be handled by a program. Maybe you have driving information We are building a driving test environment focusing on environment, position recognition, route planning, obstacle avoidance and path reset, and it is not the average final error rate, but the time when the error increases The experiment was conducted by a household that catches the moment of recalibration. Through the process, stable running results were obtained compared to the previous experiment. In this research, I think that it will be a development method that can improve the running performance of educational robots equipped with low-cost sensors currently on the market.

Influence of Texture on the Tensile Properties in AZ31 Magnesium Alloy (AZ31 마그네슘합금의 집합조직에 따른 인장특성)

  • Park, No-Jin;Hwang, Joong-Ho;Roh, Jae-Seung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Magnesium alloys are drawing a lot of attention and have been extensively studied. The major obstacle to the practical application of the alloys is the poor formability at room temperature, originating basically from the insufficient number of slip system. Development of a proper texture is one promising solution to improve the formability. In the present work, after extrusion and full annealing, microstructures, texture developments and tensile properties of AZ31 Mg alloys are studied. After full annealing strong <1010>||ED fiber texture and weak <1120>+<1230>||ED fiber texture (c-axes in the radial direction) were developed. The textures are distinctly influencing the tensile properties, which can be understood in terms of the activation of basal slip modes. With the random orientation, which is developed in the $45^{\circ}$ sample to the extrusion direction, the better workability can be achieved at room temperature.

Boundary-RRT* Algorithm for Drone Collision Avoidance and Interleaved Path Re-planning

  • Park, Je-Kwan;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1324-1342
    • /
    • 2020
  • Various modified algorithms of rapidly-exploring random tree (RRT) have been previously proposed. However, compared to the RRT algorithm for collision avoidance with global and static obstacles, it is not easy to find a collision avoidance and local path re-planning algorithm for dynamic obstacles based on the RRT algorithm. In this study, we propose boundary-RRT*, a novel-algorithm that can be applied to aerial vehicles for collision avoidance and path re-planning in a three-dimensional environment. The algorithm not only bounds the configuration space, but it also includes an implicit bias for the bounded configuration space. Therefore, it can create a path with a natural curvature without defining a bias function. Furthermore, the exploring space is reduced to a half-torus by combining it with simple right-of-way rules. When defining the distance as a cost, the proposed algorithm through numerical analysis shows that the standard deviation (σ) approaches 0 as the number of samples per unit time increases and the length of epsilon ε (maximum length of an edge in the tree) decreases. This means that a stable waypoint list can be generated using the proposed algorithm. Therefore, by increasing real-time performance through simple calculation and the boundary of the configuration space, the algorithm proved to be suitable for collision avoidance of aerial vehicles and replanning of local paths.

REAL-TIME 3D MODELING FOR ACCELERATED AND SAFER CONSTRUCTION USING EMERGING TECHNOLOGY

  • Jochen Teizer;Changwan Kim;Frederic Bosche;Carlos H. Caldas;Carl T. Haas
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.539-543
    • /
    • 2005
  • The research presented in this paper enables real-time 3D modeling to help make construction processes ultimately faster, more predictable and safer. Initial research efforts used an emerging sensor technology and proved its usefulness in the acquisition of range information for the detection and efficient representation of static and moving objects. Based on the time-of-flight principle, the sensor acquires range and intensity information of each image pixel within the entire sensor's field-of-view in real-time with frequencies of up to 30 Hz. However, real-time working range data processing algorithms need to be developed to rapidly process range information into meaningful 3D computer models. This research ultimately focuses on the application of safer heavy equipment operation. The paper compares (a) a previous research effort in convex hull modeling using sparse range point clouds from a single laser beam range finder, to (b) high-frame rate update Flash LADAR (Laser Detection and Ranging) scanning for complete scene modeling. The presented research will demonstrate if the FlashLADAR technology can play an important role in real-time modeling of infrastructure assets in the near future.

  • PDF

Movie Recommendation System using Community Detection and Parallel Programming (커뮤니티 탐지 및 병렬 프로그래밍을 이용한 영화 추천 시스템)

  • Sadriddinov Ilkhomjon;Yixuan Yang;Sony Peng;Sophort Siet;Dae-Young Kim;Doo-Soon Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.389-391
    • /
    • 2023
  • In the era of Big Data, humanity is facing a huge overflow of information. To overcome such an obstacle, many new cutting-edge technologies are being introduced. The movie recommendation system is also one such technology. To date, many theoretical and practical kinds of research have been conducted. Our research also focuses on the movie recommendation system by implementing methods from Social Network Analysis(SNA) and Parallel Programming. We applied the Girvan-Newman algorithm to detect communities of users, and a future package to perform the parallelization. This approach not only tries to improve the accuracy of the system but also accelerates the execution time. To do our experiment, we used the MovieLense Dataset.

What Affects Consumers' Attitude and Usage Intention of O2O Apps?: Integration of TAM, TPB, and Transaction Cost Theory

  • Won In Lee
    • Asia pacific journal of information systems
    • /
    • v.33 no.2
    • /
    • pp.298-317
    • /
    • 2023
  • This study is about the attitudes and intentions of consumers considering the usage of O2O application (app) under the COVID-19 situation. By integrating TAM and TPB as a theoretical background, we selected VPC (various product choice) and PII (product information intensity) as new functional external variables that have a positive effect on new system called O2O commerce. We also applied the transaction cost theory to investigate the obstacle of O2O business. We conducted a survey of consumers in large cities in the Korean market. As a result of this study, it was found that the more O2O app users recognized the influence of SN (subject norms), the more useful O2O app was, the more it led to a change in attitude and usage intention was positively significant. In addition, as the O2O app was easy to use and useful, and the SN was recognized, the user's attitude was positive. On the other hand, it was also found that the transaction cost that consumers have to pay had a negative effect on usage intention. Additionally, VPC and PII have been shown to positively influence on usefulness of O2O apps.