• Title/Summary/Keyword: Obstacle information

Search Result 782, Processing Time 0.029 seconds

A Study on Autonomous Driving Mobile Robot by Using Fuzzy Algorith (퍼지 알고리즘을 이용한 자율주행 이동로봇의 설계에 관한 연구)

  • Seo Hyun-Jae;Lim Young-Do
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4B
    • /
    • pp.278-284
    • /
    • 2006
  • In thispaper, we designed a intelligent autonomous driving robot by using Fuzzy algorithm. The object of designed robot is recognition of obstacle, avoidance of obstacle and safe arrival. We append a suspension system to auxiliary wheel for improvement in stability and movement. The designed robot can arrive at destination where is wanted to go by the old and the weak and the handicapped at indoor hospital and building.

Autonomous Omni-Directional Cleaning Robot System Design

  • Choi, Jun-Yong;Ock, Seung-Ho;Kim, San;Kim, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2019-2023
    • /
    • 2005
  • In this paper, an autonomous omni directional cleaning robot which recognizes an obstacle and a battery charger is introduced. It utilizes a robot vision, ultra sonic sensors, and infrared sensors information along with appropriate algorithm. Three omni-directional wheels make the robot move any direction, enabling a faster maneuvering than a simple track typed robot. The robot system transfers command and image data through Blue-tooth wireless modules to be operated in a remote place. The robot vision associated with sensor data makes the robot proceed in an autonomous behavior. An autonomous battery charger searching is implemented by using a map-building which results in overcoming the error due to the slip on the wheels, and camera and sensor information.

  • PDF

Pilot Implementation of Intelligence System for Accident Prevention at Railway Level Crossing (철도건널목 지능화시스템 시범 구축)

  • Cho, Bong-Kwan;Ryu, Sang-Hwan;Hwang, Hyeon-Chyeol;Jung, Jae-Il
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1112-1117
    • /
    • 2010
  • The intelligent safety system for level crossing which employs information and communication technology has been developed in USA and Japan, etc. But, in Korea, the relevant research has not been performed. In this paper, we analyze the cause of railway level crossing accidents and the inherent problem of the existing safety equipments. Based on analyzed results, we design the intelligent safety system which prevent collision between a train and a vehicle. This system displays train approaching information in real-time at roadside warning devices, informs approaching train of the detected obstacle in crossing areas, and is interconnected with traffic signal to empty the crossing area before train comes. Especially, we present the video based obstacle detection algorithm and verify its performance with prototype H/W since the abrupt obstacles in crossing areas are the main cause of level crossing accidents. We identify that the presented scheme detects both pedestrian and vehicle with good performance. Currently, we demonstrate developed railway crossing intelligence system at one crossing of Young-dong-seon line of Korail with Sea Train cockpit.

  • PDF

The Collision Avoidance Method in the Chaotic Robot with Hyperchaos Path

  • Youngchul Bae;Kim, Juwan;Park, Namsup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.584-588
    • /
    • 2003
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a Hyperchaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos robot meets an obstacle in a hyper-chaos equation trajectory, the obstacle reflects the robot. We also show computer simulation result of hyperchaos equation trajectories with one or more Van der Pol obstacles.

  • PDF

The Generation of Directional Velocity Grid Map for Traversability Analysis of Unmanned Ground Vehicle (무인차량의 주행성분석을 위한 방향별 속도지도 생성)

  • Lee, Young-Il;Lee, Ho-Joo;Jee, Tae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.549-556
    • /
    • 2009
  • One of the basic technology for implementing the autonomy of UGV(Unmanned Ground Vehicle) is a path planning algorithm using obstacle and raw terrain information which are gathered from perception sensors such as stereo camera and laser scanner. In this paper, we propose a generation method of DVGM(Directional Velocity Grid Map) which have traverse speed of UGV for the five heading directions except the rear one. The fuzzy system is designed to generate a resonable traveling speed for DVGM from current patch to the next one by using terrain slope, roughness and obstacle information extracted from raw world model data. A simulation is conducted with world model data sampled from real terrain so as to verify the performance of proposed fuzzy inference system.

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

Command Fusion for Navigation of Mobile Robots in Dynamic Environments with Objects

  • Jin, Taeseok
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • In this paper, we propose a fuzzy inference model for a navigation algorithm for a mobile robot that intelligently searches goal location in unknown dynamic environments. Our model uses sensor fusion based on situational commands using an ultrasonic sensor. Instead of using the "physical sensor fusion" method, which generates the trajectory of a robot based upon the environment model and sensory data, a "command fusion" method is used to govern the robot motions. The navigation strategy is based on a combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance based on a hierarchical behavior-based control architecture. To identify the environments, a command fusion technique is introduced where the sensory data of the ultrasonic sensors and a vision sensor are fused into the identification process. The result of experiment has shown that highlights interesting aspects of the goal seeking, obstacle avoiding, decision making process that arise from navigation interaction.

Local Path Planning and Obstacle Avoidance System based on Reinforcement Learning (강화학습 기반의 지역 경로 탐색 및 장애물 회피 시스템)

  • Lee, Se-Hoon;Yeom, Dae-Hoon;Kim, Pung-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.59-60
    • /
    • 2019
  • WCS에서 AGV의 스케줄링과 동적, 정적 장애물 인식 및 충돌 회피문제는 오래전부터 다뤄져 온 중요한 문제이다. 본 논문에서는 위의 문제를 해결하기 위해 Lidar 센서를 중심으로 다양한 데이터를 기반으로 한 강화학습 시스템을 제안한다. 제안하는 시스템은 기본의 명시적인 알고리즘에 비해 다양하고 유동적인 환경에서 경로 계획과 동적 정적 장애물을 인식하고 안정적으로 회피하는 것을 확인하였으며 산업 현장에 도입 가능성을 확인하였다. 또한 강화학습의 적용 범위, 적용 방안과 한계에 대해서 시사한다.

  • PDF

obstacle detection and Unmanned driving management system in Drivable Area (주행영역 내의 장애물 탐지 및 무인주행 관리 시스템)

  • Buem-jun Kim;Hyeong-gi Jeon;Kyoung-hee Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.287-289
    • /
    • 2023
  • 본 논문에서는 무인주행로봇에 적용할 수 있는 장애물 탐지 및 주행지역 이탈을 관리하는 시스템을 제안한다. 제안 시스템은 웹캠과 같은 일반적인 카메라를 활용하여 촬영되는 공간에서 무인주행로봇을 운용할 영역을 선정하고 운용영역내의 장애물 발생 여부를 판단한다. 제안 시스템은 카메라 위치 기준으로 촬영되는 버드뷰에서 무인주행로봇의 운용영역을 설정하고 탐지된 장애물의 정보를 제공하여 무인주행로봇의 주행에 있어 안전하고 효율적인 주행 기능을 제공할 수 있을 것으로 기대한다.

  • PDF

Path Design Method of Mobile Robot for Obstacle Avoidance Using Ceiling- mounted Camera System and Its Implementation (천장설치형 카메라 시스템을 사용한 장애물 회피용 이동 로봇의 경로설계법과 그 구현)

  • 트란안킴;김광주;중탄람;김학경;김상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.73-82
    • /
    • 2004
  • In this paper, implementation of obstacle avoidance of a nonholonomic mobile robot in unstructured environment is introduced. To avoid obstacles, first, a reference collision-free path for the MR is generated off-line using HJB-based optimal path planning method. A controller is designed using integrator backstepping method for tracking the generated reference path. To implement the designed controller, a control system are needed and composed of camera system and PIC-based controller. The workspace is observed by a ceiling-mounted USB camera as part of an un-calibrated camera system. Thus the positional information of the MR is updated frequently and the MR can get the useful inputs for its tracking controller. The whole control system is realized by integrating a computer with PIC-based microprocessor using wireless communication: the image processing control module and path planning module serve as high level computer control while the device control serves as low level PIC microprocessor control. The simulation and experimental results show the effectiveness of the designed control system.