• Title/Summary/Keyword: Observed rainfall

Search Result 983, Processing Time 0.031 seconds

Evaluation of the Influence of Inland Pollution Sources on Shellfish Growing Areas after Rainfall Events in Geoje Bay, Korea (강우에 따른 거제만해역 육상오염원의 영향평가)

  • Ha, Kwang-Soo;Yoo, Hyun-Duk;Shim, Kil-Bo;Kim, Ji-Hoe;Lee, Tae-Seek;Kim, Poong-Ho;Ju, Ja-Yeon;Lee, Hee-Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.612-621
    • /
    • 2011
  • The influences of inland pollution sources because of rainfall events on the bacteriological water quality in Geoje Bay, a major shellfish production area in Korea, were investigated. The sanitary status of sea water and shellfish after rainfall events was also evaluated. The flow rates of 13 streams around Geoje Bay showed 6 to 7-fold increases after 15 to 21 mm of rainfall. Peak pollution was observed in the Naegan Stream, the Gandeok Stream and the Seojeong Stream. The calculated impact area of inland pollution sources was 3.1 $km^2$ immediately after 15 mm of rainfall and expanded to 3.5 $km^2$ after 24 hours. These calculations of impacted area matched results from fecal coliform analyses with sea water. The distance between the major pollution source in the bay (the Gandeok Stream) and the station with the worst bacteriological water quality immediately after 15 mm of rainfall, which was below the Korean standard, was 0.8 km in a straight line; this distance increased to 2.0 km after a period of 24 hours. The area impacted by inland pollution sources after a 15 mm rainfall event was wider than after a 21 mm rainfall. Although the flow rate from inland pollution sources was higher, the concentration of fecal coliform in the discharged water was lower after higher rainfall events. These observations corresponded with the results of fecal coliform analyses with sea water samples. According to the evaluation of the influences of inland pollution sources and fecal coliform analyses on sea water and shellfish samples in Geoje Bay, pollutants from inland sources did not reach the boundary line of the shellfish growing area after rainfall events of 15 or 22 mm. The bacteriological water quality of the shellfish growing area in Geoje Bay met the Korean standard and US NSSP requirements for approved shellfish growing areas.

On the Change of Flood and Drought Occurrence Frequency due to Global Warming : 1. Change of Daily Rainfall Depth Distribution due to Different Monthly/Yearly Rainfall Depth (지구온난화에 따른 홍수 및 가뭄 발생빈도의 변화와 관련하여 : 1. 연/월강수량의 변화에 따른 일강수량 분포의 변화분석)

  • Yun, Yong-Nam;Yu, Cheon-Sang;Lee, Jae-Su;An, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.617-625
    • /
    • 1999
  • Global warming has begun since the industrial revolution and it is getting worse recently. Even though the increase of greenhouse gases such as $CO_2$ is thought to be the main cause for global warming, its impact on global climate has not been revealed clearly in rather quantitative manners. However, researches using General Circulation Models(GCMs) has shown the accumulation of greenhouse gases increases the global mean temperature, which in turn impacts on the global water circulation pattern. This changes in global water circulation pattern result in abnormal and more frequent meteorological events such as severe floods and droughts, generally more severe than the normal ones, which are now common around the world and is referred as a indirect proof of global warming. Korean peninsula also cannot be an exception and have had several extremes recently. The main objective of this research is to analyze the impact of global warming on the change of flood and drought frequency. Based on the assumption that now is a point in a continuously changing climate due to global warming, we analyzed the observed daily rainfall data to find out how the increase of annual rainfall amount affects the distribution of daily rainfall. Obviously, the more the annual rainfall depth, the more frequency of much daily rainfall, and vice versa. However, the analysis of the 17 points data of Keum river basin in Korea shows that especially the number of days of under 10mm or over 50mm daily rainfall depth is highly correlated with the amount of annual rainfall depth, not the number of dry days with their correlation coefficients quite high around 0.8 to 0.9.

  • PDF

Outlook for Temporal Variation of Trend Embedded in Extreme Rainfall Time Series (극치강우자료의 경향성에 대한 시간적 변동 전망)

  • Seo, Lynn;Choi, Min-Ha;Kim, Tae-Woong
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.13-23
    • /
    • 2010
  • According to recent researches on climate change, the global warming is obvious to increase rainfall intensity. Damage caused by extreme hydrologic events due to global change is steadily getting bigger and bigger. Recently, frequently occurring heavy rainfalls surely affect the trend of rainfall observations. Probability precipitation estimation method used in designing and planning hydrological resources assumes that rainfall data is stationary. The stationary probability precipitation estimation method could be very weak to abnormal rainfalls occurred by climate change, because stationary probability precipitation estimation method cannot reflect increasing trend of rainfall intensity. This study analyzed temporal variation of trend in rainfall time series at 51 stations which are not significant for statistical trend tests. After modeling rainfall time series with maintaining observed statistical characteristics, this study also estimated whether rainfall data is significant for the statistical trend test in near future. It was found that 13 stations among sample stations will have trend within 10 years. The results indicate that non-stationary probability precipitation estimation method must be applied to sufficiently consider increase trend of rainfall.

Runoff Analysis for Weak Rainfall Event in Urban Area Using High-ResolutionSatellite Imagery (고해상도 위성영상을 이용한 도시유역의 소강우 유출해석)

  • Kim, Jin-Young;An, Kyoung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.439-446
    • /
    • 2011
  • In this research, enhanced land-cover classification methods using high-resolution satellite image (HRSI) and GIS in terms of practicality and accuracy was proposed. It aims for understanding non-point pollutant origin/loading, assessment the efficiency of rainfall storage/infiltration facilities and sounds water-environment management. The result of applying enhanced land-cover classification methods to the urban region verifies that roof and road area are including various vegetations such as roof garden, flower bed in the median strip and street tree. This accounts for 3% of total study area, and more importantly it was counted as impervious area by GIS alone or conventional indoor work. The feasibility of the method was assessed by applying to rainfall-runoff analysis for three weak rainfall in the range of 7.1-10.5 mm events in 2000, Chiba, Japan. A good agreement between simulated and observed runoff hydrograph was obtained. In comparison, the hydrograph simulated with land-use parameters by the detailed land-use information of 10m grid had an error between 31%~71%, while enhanced method showed 4% to 29%, and showed the improvement particularly for reproducing observed peak and recession flow rate of hydrograph in weak rainfall condition.

A Stiudy on the Deveplopment of Algorithm for the Representative Unit Hydrograph of a Watershed as a Closed Linear System. (폐선형계로 본 유역대표 단위유량도의 유도를 위한 알고리즘의 개발에 관한 연구)

  • 김재한;이원환
    • Water for future
    • /
    • v.13 no.2
    • /
    • pp.35-47
    • /
    • 1980
  • An algorithm is developed to derive a representative I hr-unit hydrograph through an analysis of rainfall-runoff relations of a watershed as a closed system. For the base flow seperation of a flood hydrograph the multi-deflection method is proposed herein, which gace better results compared with those by the existing empirical methods. A modified $\Phi$index method is also proposed in this stidy to determine the time distribution rainfall excess of a rainstorm, which is essetially a modification of the commonly used $\Phi$index method of rainfall seperation. With the so-obtained rainfall excess hyetograph and the direct runoff hydrograph a trial and error computation of the ordinates of 1 hr-unit hydrograph was executed in such a manner that the synthesized flood hydrograph closely approximates the observed one, thus resulting a unit hydrograph of a piecewise exponential function type. To verify the validity of this study the 1 hr-unit hydrographs for the Imha and Dongchon in Nagdong River basin, and Yongdam in Geum River basin were derived by this algorithm, and the results were compared with those by the conventional synthetic unit hydrograph method and the Nakayasu method. Besides, the validity of this stiudy was also tested by comparing the observed hydrograph with the one computed by applying the unit hydrograph to a specific rainfall event. To generalize the result of this study a computer program, consisited of a main and three subprograns (for rainfall excess estimation, convolution summation, and sorting), is developed as a package, which is believed to be applicable to other watersheds for the similar purpose as those in this study.

  • PDF

Adjustment of TRM/PR Data by Ground Observed Rainfall Data and SCS Runoff Estimation : Yongdam-Dam Watershed (지상강우 관측치에 의한 TRM/PR 관측치의 보정 및 SCS 유출해석 : 용담댐 유역을 대상으로)

  • Jang, Cheol-Hee;Kwon, Hyung-Joong;Koh, Deok-Ku;Kim, Seung-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.647-659
    • /
    • 2003
  • The purpose of this study is to evaluate hydrological applicability of spatially observed rainfall distribution data by the TRMM/PR (Tropical Rainfall Measuring Mission / Precipitation Radar). For this study, firstly, TRMM/PR data (Y) of the Yongdam-Dam Watershed (930.38$km^2$) was extracted and secondly, TRMM/PR data and the rainfall data (X) by AWS (Automatic Weather Station) were compared by executing a correlation analysis. As a result, the regression equations were deduced as two parts (under 60mm/day : Y = 18.55X-0.53, over 60mm/day : Y = 3.11X+51.16). SCS runoff analysis was conducted using 7 rainfall events in 1999 for Yongdam-Dam watershed and the Cheon-Cheon subwatershed for the revised TRMM/PR data. TRMM/PR data showed relative errors ranging from 19.6% ti 45.6%, and from 11.3% to 38.9% for Cheon-Cheon subwatershed and Yongdam-Dam watershed, respectively, AWS data showed relative errors ranging from 0.5% to 12.8%, and from -1.6% to -10.3%, for Cheon-Cheon subwatershed and Yongdam-Dam watershed, respectively. Futher researches are necessary to evaluate the relationship between TRMM/PR data and AWS data for practical hydrological applications.

Rainfall Runoff Characteristics and Risk Assessment of Agro-chemicals Used in Golf Links (골프장에 산포되는 농약의 강우유출특성과 risk assessment)

  • ;Tohru Morioka
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 1995
  • A rainfall runoff model described in this paper which is based on Basin- wide Ecological Model(BAWEM) calculates the fate of afro-chemicals in a watershed located of golf links. The rainfall runoff coefficients of afro-chemicals, which are the dominant parameters to predict the movement of agro-chemicals from soil and turfgrass to downstream water, are estimated. Also, the model is used to estimate the level of health risks the residents around golf links are exposed to. The fidelity of rainfall runoff model of afro-chemicals was validated by the observed data obtained during rainy period. The calculated results from this model were found to be in the same order of that of the observed. The rainfall runoff coefficients of four agro-chemicals used in golf links were 5.4$\times$$10^{-3}$, 1.9$\times$$10^{-3}$, 3.0$\times$$10^{-4}$ and 4.4$\times$$10^{-3}$ for flutolanil, isoprothiolane, chlorpyrifos and simazine, respectively The health risk level to the residents around golf links is evaluated to be rather low:the ratio of estimated dose through drinking water to the 10% of ADI(Acceptable Daily Intake) value or VSD for 10-a life time risk varied in the range of 0.005~0.04 and 0.003~0.11, respectively, for both the annual mean and maximum monthly mean cases.

  • PDF

Estimation of Probability Precipitation by Regional Frequency Analysis using Cluster analysis and Variable Kernel Density Function (군집분석과 변동핵밀도함수를 이용한 지역빈도해석의 확률강우량 산정)

  • Oh, Tae Suk;Moon, Young-Il;Oh, Keun-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.225-236
    • /
    • 2008
  • The techniques to calculate the probability precipitation for the design of hydrological projects can be determined by the point frequency analysis and the regional frequency analysis. Probability precipitation usually calculated by point frequency analysis using rainfall data that is observed in rainfall observatory which is situated in the basin. Therefore, Probability precipitation through point frequency analysis need observed rainfall data for enough periods. But, lacking precipitation data can be calculated to wrong parameters. Consequently, the regional frequency analysis can supplement the lacking precipitation data. Therefore, the regional frequency analysis has weaknesses compared to point frequency analysis because of suppositions about probability distributions. In this paper, rainfall observatory in Korea did grouping by cluster analysis using position of timely precipitation observatory and characteristic time rainfall. Discordancy and heterogeneity measures verified the grouping precipitation observatory by the cluster analysis. So, there divided rainfall observatory in Korea to 6 areas, and the regional frequency analysis applies index-flood techniques and L-moment techniques. Also, the probability precipitation was calculated by the regional frequency analysis using variable kernel density function. At the results, the regional frequency analysis of the variable kernel function can utilize for decision difficulty of suitable probability distribution in other methods.

Characteristics of Soil Erosion on the Forest Fired Sites by Using Rainfall Simulator (인공강우장치를 이용한 산불발생지의 토양침식 특성에 관한 연구)

  • Lee, Heon Ho;Joo, Jae Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.649-656
    • /
    • 2006
  • The purpose of study is to measure soil erosion quantity for elapsed four years from the fire on forest fired sites of Dong-gu, Daegu. This study was conducted to investigate the characteristics of soil erosion by fire occurrence influencing on the soil erosion were. Also analysis result follows that the relations between soil erosion quantity and rainfall intensity, the slope and elapsed year. The results analysed were as follows: 1. Soil erosion by year of occurrence of forest fire was increased 1.9 to 5.7 times as rainfall intensity was increased by 30 m/hr, and 1.4 to 14.2% as degree of slope was increased by $10^{\circ}$. 2. In the first year of forest fire occurrence, soil erosion was fairly heavy for 10 minutes of initial rainfall of which rainfall intensity was 80 m/hr and degree of slope was $30^{\circ}$. The amount of soil erosion was gradually reduced as elapsed time. From two years after fire, the amount of soil erosion by rainfall intensity and degree of slope was nearly constant. 3. The amount of soil erosion by rainfall intensity and slope in accordance with elapsed time after fire was reduced 28.9 to 94.1% in three years after occurrence of forest fire as compared to the first year of fire. Soil erosion was fairly heavy by rainfall intensity and slope in the first year of fire, but it was gradually reduced from two years after fire. 4. In the analysis on influences of each factors on the amount of soil erosion on forest fired sites, the amount of soil erosion was significant differences in major impacts of each rainfall intensity, degree of slope and elapsed year after fire and interaction of rainfall intensity${\times}$degree of slope and rainfall intensity${\times}$elapsed year after fire, but no differences were observed in interaction of degree of slope${\times}$elapsed year after fire and rainfall intensity${\times}$degree of slope${\times}$elapsed year after fire. Rainfall intensity was the most affecting factor on the amount of soil erosion and followed by degree of slope and elapsed year after fire. 5. For correlation between soil erosion and affecting three factors, soil erosion showed significant positive relation with rainfall intensity and degree of slope at I % level, and significant negative relation with elapsed year after fire at 1 % level. 6. As a result of regression of affecting three factors on soil erosion. rainfall intensity was most significant impact factor in explaining the amount of soil erosion on forest fired sites, followed by degree of slope and elapsed year after forest fire. 7. The formula for estimating soil erosion using rainfall intensity, degree of slope and elapsed year after forest fire occurrence was made. S.E = 0.092R.I + 0.211D.S - 0.942E.Y(S.E : Soil erosion, R.I : Rainfall intensity, D.S : Degree of slope, E.Y : Elapsed year after forest fire occurrence)

Yield and Seed Quality Changes According to Delayed Harvest with Rainfall Treatment in Soybean (Glycine max L.) (강우처리 및 수확 지연에 따른 콩 종실 특성 및 수량성 변화)

  • Lee, Inhye;Seo, Min-Jung;Park, Myoung Ryoul;Kim, Nam-Geol;Yi, Gibum;Lee, Yu-young;Kim, Mihyang;Lee, Byong Won;Yun, Hong-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.353-364
    • /
    • 2020
  • Recently in Korea, soybean harvesting has been delayed due to rainfall during the harvesting season, resulting in a reduction in yield and seed quality. This study was conducted to analyze the changes in yield and seed quality during delayed harvest with rainfall treatment using different harvesting methods, including field harvesting and polyethylene film covering after cutting fully-matured soybean plants (PE covering after cutting), with two major Korean soybean cultivars (Glycine max L), Pungsannamulkong and Daewonkong. The shattering rate of Pungsannamulkong, which is higher than that of Daewonkong, increased up to 41.8% when the harvest was delayed for 40 days without rainfall treatment by harvesting with PE covering after cutting. The weight of 100 seeds tended to decrease slightly as harvesting was delayed. When Daewonkong was harvested using the PE covering after cutting method with rainfall treatment, the yield decreased to the lowest level with a 0.8 kg ha-1 daily reduction rate. Pungsannamulkong showed the lowest yield when harvested using PE covering after cutting without rainfall treatment with a 3.4 kg ha-1 daily reduction rate. The infected seed rate increased according to the harvest delay in both cultivars, and significant differences were observed according to rainfall treatment and harvesting method. The germination rate was maintained above 95% even after 40 days of delayed harvest if there was no rainfall treatment. However, with rainfall treatment, the germination rate was significantly lowered as harvesting time was delayed. In the field harvesting with rainfall treatment, the germination rate decreased to 77.2% for Daewonkong and 76.5% for Pungsannamulkong after 40 days of harvest delay. For the 100-seed weight, effects of individual treatments and interactions between treatments were not observed. In contrast, the effect of interactions between treatments on the shattering rate was significant in both cultivars, indicating that the shattering rate had the greatest impact on the yield changes during delayed harvest.