• Title/Summary/Keyword: Observed rainfall

Search Result 981, Processing Time 0.026 seconds

Selection of dominant meteorological indices related with heavy rainfall caused by BAIU activity

  • Koji, Nishiyama;Yoshitaka, I;Kenji, Jinno;Akira, Kawamura
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2003.05a
    • /
    • pp.163-170
    • /
    • 2003
  • In this study, paying much attention to notable features obtained from spatial distributions of strongly related indices (precipitable water, convergence of air, convective available potential energy) with precipitation, fatal problems in selecting strongly related indices with observed precipitation in a BAIU season were discussed. These results showed spatial distribution of a predicted index provided alternative and physically consistent interpretation for selecting dominant index for heavy rainfall even if the predicted index did not correlate with observed rainfall at a specific observational point as confirmed by the features of CONV (Convergence) or even if it correlated with observed rainfall as confirmed by those of PW (Precipitable Water). Therefore, dominant meteorological indices of heavy rainfall should be selected according to physically evidenced interpretation on features of spatial distributions of indices, and physically and statistically consistent relationship should be built up.

  • PDF

A Numerical Simulation Study of Orographic Effects for a Heavy Rainfall Event over Korea Using the WRF Model (WRF 모형을 이용한 한반도 집중 호우에 대한 지형 효과의 수치 모의 연구)

  • Lee, Ji-Woo;Hong, Song-You
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.319-332
    • /
    • 2006
  • This study examines the capability of the WRF (Weather Research and Forecasting) model in reproducing heavy rainfall that developed over the Korean peninsula on 26-27 June 2005. The model is configured with a triple nesting with the highest horizontal resolution at a 3-km grid, centered at Yang-dong, Gyeonggi-province, which recorded the rainfall amount of 376 mm. In addition to the control experiment employing realistic orography over Korea, two consequent sensitivity experiments with 1) no orography, and 2) no land over Korea were designed to investigate orographic effects on the development of heavy rainfall. The model was integrated for 48 hr, starting at 1200 UTC 25 June 2005. The overall features of the large-scale patterns including a cyclone associated with the heavy rainfall are reasonably reproduced by the control run. The spatial distribution of the simulated rainfall over Korea agreed fairly well with the observed. The amount of predicted maximum rainfall at the 3-km grid is 377 mm, which located about 50 km southeast from the observed point, Yang-Dong, indicating that the WRF model is capable of predicting heavy rainfall over Korea at the cloud resolving resolutions. Further, it was found that the complex orography over the Korean peninsula plays a role in enhancing the rainfall intensity by about 10%. The land-sea contrast over the peninsula was fund to be responsible for additional 10% increase of rainfall amount.

Determination of the Storage Constant for the Clark Model by based on the Observed Rainfall-Runoff Data (강우-유출 자료에 의한 Clark 모형의 저류상수 결정)

  • Ahn, Tae-Jin;Choi, Kwang-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1454-1458
    • /
    • 2007
  • The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage constant based on the observed rainfall-runoff data at the three stage stations in the Imjin river basin and the three stage stations in the Ansung river basin. In this study four methods have been proposed to estimate the storage constant from observed rainfall-runoff data. The HEC-HMS model has been adopted to execute the sensitivity of storage constant. A criteria has been proposed to determine storage constant based on the results of the observed hydrograph and the HEC-HMS model.

  • PDF

Spatial-Temporal Interpolation of Rainfall Using Rain Gauge and Radar (강우계와 레이더를 이용한 강우의 시공간적인 활용)

  • Hong, Seung-Jin;Kim, Byung-Sik;Hahm, Chang-Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.37-48
    • /
    • 2010
  • The purpose of this paper is to evaluate how the rainfall field effect on a runoff simulation using grid radar rainfall data and ground gauge rainfall. The Gwangdeoksan radar and ground-gauge rainfall data were used to estimate a spatial rainfall field, and a hydrologic model was used to evaluate whether the rainfall fields created by each method reproduced a realistically valid spatial and temporal distribution. Pilot basin in this paper was the Naerin stream located in Inje-gun, Gangwondo, 250m grid scale digital elevation data, land cover maps, and soil maps were used to estimate geological parameters for the hydrologic model. For the rainfall input data, quantitative precipitation estimation(QPE), adjusted radar rainfall, and gauge rainfall was used, and then compared with the observed runoff by inputting it into a $Vflo^{TM}$ model. As a result of the simulation, the quantitative precipitation estimation and the ground rainfall were underestimated when compared to the observed runoff, while the adjusted radar rainfall showed a similar runoff simulation with the actual observed runoff. From these results, we suggested that when weather radars and ground rainfall data are combined, they have a greater hydrological usability as input data for a hydrological model than when just radar rainfall or ground rainfall is used separately.

Development and validation of poisson cluster stochastic rainfall generation web application across South Korea (포아송 클러스터 가상강우생성 웹 어플리케이션 개발 및 검증 - 우리나라에 대해서)

  • Han, Jaemoon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.335-346
    • /
    • 2016
  • This study produced the parameter maps of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) stochastic rainfall generation model across South Korea and developed and validated the web application that automates the process of rainfall generation based on the produced parameter maps. To achieve this purpose, three deferent sets of parameters of the MBLRP model were estimated at 62 ground gage locations in South Korea depending on the distinct purpose of the synthetic rainfall time series to be used in hydrologic modeling (i.e. flood modeling, runoff modeling, and general purpose). The estimated parameters were spatially interpolated using the Ordinary Kriging method to produce the parameter maps across South Korea. Then, a web application has been developed to automate the process of synthetic rainfall generation based on the parameter maps. For validation, the synthetic rainfall time series has been created using the web application and then various rainfall statistics including mean, variance, autocorrelation, probability of zero rainfall, extreme rainfall, extreme flood, and runoff depth were calculated, then these values were compared to the ones based on the observed rainfall time series. The mean, variance, autocorrelation, and probability of zero rainfall of the synthetic rainfall were similar to the ones of the observed rainfall while the extreme rainfall and extreme flood value were smaller than the ones derived from the observed rainfall by the degree of 16%-40%. Lastly, the web application developed in this study automates the entire process of synthetic rainfall generation, so we expect the application to be used in a variety of hydrologic analysis needing rainfall data.

Optimizing Hydrological Quantitative Precipitation Forecast (HQPF) based on Machine Learning for Rainfall Impact Forecasting (호우 영향예보를 위한 머신러닝 기반의 수문학적 정량강우예측(HQPF) 최적화 방안)

  • Lee, Han-Su;Jee, Yongkeun;Lee, Young-Mi;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1053-1065
    • /
    • 2021
  • In this study, the prediction technology of Hydrological Quantitative Precipitation Forecast (HQPF) was improved by optimizing the weather predictors used as input data for machine learning. Results comparison was conducted using bias and Root Mean Square Error (RMSE), which are predictive accuracy verification indicators, based on the heavy rain case on August 21, 2021. By comparing the rainfall simulated using the improved HQPF and the observed accumulated rainfall, it was revealed that all HQPFs (conventional HQPF and improved HQPF 1 and HQPF 2) showed a decrease in rainfall as the lead time increased for the entire grid region. Hence, the difference from the observed rainfall increased. In the accumulated rainfall evaluation due to the reduction of input factors, compared to the existing HQPF, improved HQPF 1 and 2 predicted a larger accumulated rainfall. Furthermore, HQPF 2 used the lowest number of input factors and simulated more accumulated rainfall than that projected by conventional HQPF and HQPF 1. By improving the performance of conventional machine learning despite using lesser variables, the preprocessing period and model execution time can be reduced, thereby contributing to model optimization. As an additional advanced method of HQPF 1 and 2 mentioned above, a simulated analysis of the Local ENsemble prediction System (LENS) ensemble member and low pressure, one of the observed meteorological factors, was analyzed. Based on the results of this study, if we select for the positively performing ensemble members based on the heavy rain characteristics of Korea or apply additional weights differently for each ensemble member, the prediction accuracy is expected to increase.

A Proposed Simple Method for Multisite Point Rainfall Generation (일강우자료의 다지점 모의 발생을 위한 간단한 방법 제안)

  • Yu, Cheol-Sang;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.99-110
    • /
    • 2000
  • In this study we proposed a simple method for generating multi-site daily rainfall based on the 1-order Markov chain and considering the spatial correlation. The occurrence of rainfall is simulated by a simple 1st-order Markov chain and its intensity to be chosen randomly from the observed data. The spatial correlation between sites could be conserved as the rainfall intensity at each site is to be chosen consistently with the target site in time through generation. It is found that the generated daily rainfall data reproduce genera] characteristics of the observed data such as average, standard deviation, average number of wet and dry days, but the clustering level in time is somewhat loosened. Thus, the lag-I correlation coefficient of the generated data gave smaller value than the observed, also the average lengths of wet run and dry run and the wet-to-wet and dry-to-dry probabilities were a bit less than the observed. This drawback seems to be overcome somewhat by choosing a proper site representing overall basin characteristics or by use of more detailed states of rainfall occurrence.

  • PDF

The South-North Oscillation Centered on 1996 in Korean Summer Rainfall Variability (한반도 여름 강우량의 변화에서 1996년을 중심으로 나타나는 남북진동 패턴)

  • Choi, Ki-Seon;Oh, Su-Bin;Kim, Do-Woo;Byun, Hi-Ryong
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.91-100
    • /
    • 2010
  • In accordance with the time series of rainfall in summer (June, July and August) in South and North Korea for recent 28 years (1981-2008), rainfall is substantially increased in South Korea since 1996, while it is significantly decreased in North Korea. In particular, the decreasing tendency of rainfall in summer in North Korea is more definitely observed during the $2^{nd}$ rainy season (late August - mid September) in intraseasonal variation. Such a feature is also confirmed in the spatial distribution of oscillation pattern between South and North Korea on the basis of 1996 which is obtained by empirical orthogonal function analysis using the summer rainfall observed in all weather observation stations in South and North Korea. For the decreasing tendency of rainfall in North Korea, it is found that northeasterlies from anticyclonic circulation centered on around Baikal Lake weaken convective activity during summer. On the contrary, the increasing tendency of rainfall in South Korea is related to the strengthened cyclonic circulation in the southern region of China and accordingly, enhances southwesterlies in South Korea.

A Study on the Analysis of the Relationship between Sea Surface Temperature and Monthly Rainfall (해수면온도와 우리나라 월강우량과의 관계분석에 관한 연구)

  • Oh, Tae-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.471-482
    • /
    • 2010
  • Rainfall events in the hydrologic circulation are closely related with various meteorological factors. Therefore, in this research, correlation relationship was analyzed between sea surface temperature of typical meteorological factor and monthly rainfall on Korean peninsula. The cluster analysis was performed monthly average rainfall data, longitude and latitude observed by rainfall observatory in Korea. Results from cluster analysis using monthly rainfall data in South Korea were divided into 4 regions. The principal components of monthly rainfall data were extracted from rainfall stations separated cluster regions. A correlation analysis was performed with extracted principal components and sea surface temperatures. At the results of correlation analysis, positive correlation coefficients were larger than negative correlation coefficients. In addition, The 3 month of principal components on monthly rainfall predicted by locally weighted polynomial regression using observed data of sea surface temperature where biggest correlation coefficients have. The result of forecasting through the locally weighted polynomial regression was revealed differences in accuracy. But, this methods in the research can be analyzed for forecasting about monthly rainfall data. Therefore, continuous research need through hydrological meteorological factors like a sea surface temperature about forecasting of the rainfall events.

Applicability of a Space-time Rainfall Downscaling Algorithm Based on Multifractal Framework in Modeling Heavy Rainfall Events in Korean Peninsula (강우의 시공간적 멀티프랙탈 특성에 기반을 둔 강우다운스케일링 기법의 한반도 호우사상에 대한 적용성 평가)

  • Lee, Dongryul;Lee, Jinsoo;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.839-852
    • /
    • 2014
  • This study analyzed the applicability of a rainfall downscaling algorithm in space-time multifractal framework (RDSTMF) in Korean Peninsula. To achieve this purpose, the 8 heavy rainfall events that occurred in Korea during the period between 2008 and 2012 were analyzed using the radar rainfall imagery. The result of the analysis indicated that there is a strong tendency of the multifractality for all 8 heavy rainfall events. Based on the multifractal exponents obtained from the analysis, the parameters of the RDSTMF were obtained and the relationship between the average intensity of the rainfall events and the parameters of the RDSTMF was developed. Based on this relationship, the synthetic space-time rainfall fields were generated using the RDSTMF. Then, the generated synthetic space-time rainfall fields were compared to the observation. The result of the comparison indicated that the RDSTMF can accurately reproduce the multifractal exponents of the observed rainfall field up to 3rd order and the cumulative density function of the observed space-time rainfall field with a reasoable accuracy.