• 제목/요약/키워드: Oblique condition

검색결과 149건 처리시간 0.039초

Comparison of Lower Limb Muscle Activities by Various Angles of a Medio-lateral Ramp During Gait

  • Lee, Sang-Yeol;Ahn, Soo-Hong
    • 대한물리의학회지
    • /
    • 제12권3호
    • /
    • pp.93-98
    • /
    • 2017
  • PURPOSE: This study investigated the activities of lower limb muscles according to the angle of a medio-lateral ramp while walking to promote awareness of the risks associated with a medio-lateral ramp. METHODS: This study was conducted on 20 healthy male adults. The muscle activities of the vastus medialis oblique (VMO), vastus lateralis oblique (VLO), tibialis anterior (TA) and peroneus longus (PL) were measured while the subjects were walking on a 3 m medio-lateral ramp. Five angles (flat, $2^{\circ}$, $5^{\circ}$, $10^{\circ}$, and $15^{\circ}$) were selected for the angle conditions of the experiment on a medio-lateral ramp. The activities were measured during the stance phase only in the middle cycle of a three-cycle walking experiment. The mean value obtained from the three walking tests was used for the analysis. RESULTS: Results showed that walking on a mediolateral ramp required more muscle activities than walking on a flat surface, through which balanced walking was achieved. CONCLUSION: Walking on a medio-lateral ramp requires proper muscle activation and control, without which the risks of injury to the joints of the lower limbs and falls are likely to increase. Therefore, special attention should be given to older people and the disabled under the condition of traversing a ramp.

철도 차축재료의 프레팅 피로거동 평가 (Evaluation of Fretting Fatigue Behavior for Railway Axle Material)

  • 최성종;권종완
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.139-145
    • /
    • 2007
  • Fretting is a kind of surface damage mechanism observed in mechanically jointed components and structures. The initial crack under fretting damage occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. This can be observed in automobile and railway vehicle, fossil and nuclear power plant, aircraft etc. In the present study, railway axle material RSA1 used for evaluation of fretting fatigue life. Plain and fretting fatigue tests were carried out using rotary bending fatigue tester with proving ring and bridge type contact pad. Through these experiments, it is found that the fretting fatigue limit decreased about 37% compared to the plain fatigue limit. In fretting fatigue, the wear debris is observed on the contact surface, and oblique cracks at an earlier stage are initiated in contact area. These results can be used as useful data in a structural integrity evaluation of railway axle.

실험적 외상성교합시 치근막섬유의 조직화학적 관찰 (A Histochemical Study of the periodontal Ligament Fibers in Trauma from Occlusion)

  • 김우성
    • 대한치과보철학회지
    • /
    • 제9권1호
    • /
    • pp.29-34
    • /
    • 1969
  • Occlusal force is a critical factor affecting the condition and structure of the periodontium. When the occlusal forces exceed the physiologic adaptive capacity of the tissues, tissue damage ensues. Such damage is referred to as trauma from occlusion. Excessive pressure causes compression, degeneration and realignment of the periodontal ligament fibers so that they are paralleled perpendicular to the tooth and bone. By inducing excessive occlusal forces with a high amalgam filling on rat's molar, the author observed histologic alterations of the periodontal ligament fibers by means of Hematoxylin-eosin, Van Gieson and Aldenyde fuchsin stainings. The results of the study were observed as follows: 1) The excessive occlusal forces altered arrangement of the collagenous fibers. 2) The arrangement of the oblique fibers showed appreciable differences between the control group and the group subjected to 10 days experimental trauma from occlusion. 3) The realignment of the transseptal fibers was not found. 4) The arrangement of the oblique fibers after 15 days of trauma from occusion was similar to that of 10 days experimental group. 5) The oxytalan fibers were more abundant at the cementum rather than at the alveolar bone. 6) The excessive occlusal forces produced funnel-shaped widening of the oxytalan fibers, which followed wavy course. 7) The oxytalan fibers appeared to be distributed mainly around the middle third of the root rather than that of the apical third of the root during the experimental trauma from occlusion.

  • PDF

논문 : 반응기체 해석을 위한 음속 및 음속에 따른 해의 정확성 연구 (Papers : The Speed of Sound for Reacting Gases and Effects of the Speed of Sound to Accuracy)

  • 김규홍;이경태;김종암;노오현
    • 한국항공우주학회지
    • /
    • 제30권1호
    • /
    • pp.9-19
    • /
    • 2002
  • AUSMPW+의 해의 정확성은 음속의 정의와 밀접한 관계가 있다. 아음속, 천음속 그리고 초음속 유동 영역에서 제어면의 음속의 해의 정확성에 어떠한 영향을 미치는지 살펴보았다. AUSMPW+에서 정의된 음속의 특징은 충격파 포착시 정확성 향상과 엔트로피 조건을 만족시키기 위한 팽창충격과 현상을 제거로 요약될 수 있다. 수학적 증명과 수치실험을 통해 이를 확인할 수 있었다. 그리고 반응 기체로 확장하여 평형, 비평형 기체에 대해서도 충격파를 정확하게 포착할 수 있는 음속을 제시하였고 이를 여러 가지 수치 실험을 통해 확인하였다.

맞춤형 지대주 각도에 따른 지지골의 유한요소 분석 (Finite Element Analysis of Supporting Bone according to Custom Abutment Angles)

  • 남민경;김남식
    • 대한치과기공학회지
    • /
    • 제37권3호
    • /
    • pp.115-120
    • /
    • 2015
  • Purpose: The purpose of this study is a finite element analysis of supporting bone according to custom abutment angle. Methods: Implant fixture was selected with a diameter of 4 mm and the length of 13 mm. The fixture and abutment was designed by a combination of the abutment screw clamping force to produce a custom abutment model of $0^{\circ}$, $15^{\circ}$, $25^{\circ}$ and $35^{\circ}$. The loading condition of 176 N was applied to the lingual surface of the crown, near to the incisor edge, and horizontal load. An oblique load of $90^{\circ}$ was applied long axis of the implant fixture analyze the stress of supporting bone. Results: The result of mechanical analysis was observed that the supporting bone stress analysis of the horizontal load, the von Mises stress values (MPa) are given in the order of TH00 (432.6) > TH25 (418.0) > TH15 (417.4) > TH35 (415.8), the oblique load, the von Mises stress values are given in the order of TO00 (459.3) > TO15 (399.6) > TO25 (374.8) > TO35 (343.4) Conclusion: The $35^{\circ}$ abutment over the current clinical tolerance limits will be available for clinical application.

Resonance and Response of the Submerged Dual Buoy/Porous-Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.22-32
    • /
    • 2001
  • The numerical investigation of obliquely incident wave interactions with fully submerged dual buoy/porous-membrane floating breakwaters placed in parallel with spacing is studied based on linear potential theory and Darcy's law. The numerical solutions are obtained by using a discrete-membrane dynamic model and second-kind modified Bessel function distribution over the entire boundaries of fluid regions. First, numerical solutions for an idealized dual submerged system without buoys are obtained. Second, a more practical dual submerged system with membrane tension provided by buoys at its tops is investigated by the multi-domain boundary element method particularly devised for dual buoy/porous-membrane problems with gaps. The velocity potentials of wave motion are coupled with porous-membrane deformation, and solved simultaneously since the boundary condition on porous-membrane is not known in advance. The effects of varying permeability on membranes and wave characteristics are discussed for the optimum design parameters of systems previously studied. The inclusion of permeability on membrane eliminates the resonances that aggravate the breakwater performance. The system is highly efficient when waves generated by the buoys and membranes were mutually canceled and its energy at resonance frequency dissipates through fine pores on membranes.

  • PDF

계단 오르고 내리기시 엉덩관절 내회전이 무릎관절 폄근과 엉덩관절 벌림근 근활성도에 미치는 영향 (Effects of Hip Internal Rotation on Knee Extensor and Hip Abductor Electromyographic Activity During Stair Up and Down)

  • 오재섭;권오윤;이충휘;전혜선
    • 한국전문물리치료학회지
    • /
    • 제15권2호
    • /
    • pp.54-63
    • /
    • 2008
  • The purpose of this study was to examine the effect of the hip internal rotation on knee extensor and hip abductor electromyographic (EMG) activity during stair up and stair down mobility. Eighteen healthy subjects were recruited. All subjects performed stair up and down movements on a step of 30cm height while maintaining the hip in neutral (condition 1) and hip in internal rotation (condition 2). Surface EMG activity was recorded from five muscles (gluteus maximus, vastus lateralis (VL), vastus medialis oblique (VMO), posterior gluteus medius (Gmed), and tensor fascia latae (TFU)) and hip internal rotation angle was measured using a three dimensional motion analysis system The time period for stair up and down was normalized using the MatLab 6.5 program, and EMG activity was normalized to the value of maximal voluntary isometric contraction (%MVIC). The EMG activities according to the hip rotation (neutral or internal rotation) during the entire time period of stair up and down in each phase were compared using a paired t-test. During the entire period of stair up, the EMG activities of VL and TFL in condition 2 were significantly greater than in condition 1 (p<.05). During the entire period of stair down, the EMG activities of VL and TFL in condition 2 were significantly greater than in condition 1 (p<.05). However, the EMG activities of the other muscles were not significantly different between the conditions (p>.05). These results suggest that the stair up and down maintaining hip internal rotation was could be a contributing factor on patellar lateral tracking.

  • PDF

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.

Effect of Contralateral Hip Adduction on Activity of Lumbar Stabilizers and Pelvic Lateral Tilting During Hip Abduction in Side-Lying

  • Kim, Hyo-Uen;Kwon, Oh-Yun;Yi, Chung-Hwi;Cynn, Heon-Seock;Choi, Houng-Sik
    • 한국전문물리치료학회지
    • /
    • 제20권4호
    • /
    • pp.16-21
    • /
    • 2013
  • The purpose of this study was to determine the effect of contralateral hip adduction (CHA) on the muscle activity of lumbar stabilizers and the angle of pelvic lateral tilting during hip abduction in side lying. Twenty healthy male subjects with no medical history of lower extremity or lumbar spine disorders were recruited for the study. Subjects randomly performed preferred hip abduction (PHA) and hip abduction with contralateral hip adduction in side lying. The muscle activities of the dominant side rectus abdominis, external oblique, internal oblique, quadratus lumborum, gluteus medius, and non-dominant side hip adductor longus were measured during PHA and CHA by using a surface electromyography (EMG) system. Pelvic lateral tilting motion was measured by using a three-dimensional motion analysis system. Data on EMG and pelvic motion were collected at the same time during PHA and CHA. A paired t-test was used to compare EMG activity and the angle of pelvic lateral tilting in the two exercises. The study found that the EMG activities of all muscles were more increased significantly in CHA than PHA condition. The angle of pelvic lateral tilting was more decreased significantly in CHA than PHA condition. These findings suggest that CHA could be recommended as a hip abduction exercise for activating lumbar stabilizers and decreasing compensatory pelvic lateral tilting motion.

골유착성 임플랜트 보철물의 캔틸레버 위치와 길이변화에 따른 삼차원 유한요소법적 응력분석 (A THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF OSSEOINTEGRATED PROSTHESIS ACCORDING TO THE LOCATION AND LENGTH OF CANTILEVER)

  • 장복숙;김창회;김영수
    • 대한치과보철학회지
    • /
    • 제34권3호
    • /
    • pp.501-532
    • /
    • 1996
  • This study investigated the effects of cantilever length, location and load condition on stress distribution developed in the implants, prostheses and supporting tissues. The osseointegrated prostheses with two 10mm Branemark implants at 2nd premolar and 1st molar sites with cantilever extensions at 1st premolar, 2nd and 3rd molar sites were constructed. Under 100N, 200N of vertical and $45^{\circ}$ oblique loads at the cantilever pontics, stress distribution patterns and displacement were analyzed with three dimensional finite element method. The results were as follows : 1. The stress was concentrated at the joint of the cantilever pontic and implant superstructure, the neck of implant and the ridge crest near the cantilever But there was little load transfer to the lower supporting tissues of implants. 2. The implant near the cantilever was displaced inferiorly while the implant far from the cantilever was displaced superiorly. In horizontal direction the implants were displaced to the direction where the loads were applied, except the apexes of the implants. 3. In case of anterior cantilever, the stress and displacement were higher than the prosthesis connected with natural tooth. 4. The stress developed in the posterior cantilevered type was higher than in the anterior cantilevered type. The greastest stress was concentrated at the ridge crest near the posterior cantilever. 5. The longer the cantilever, the more the stress was developed and was concentrated at the joint of the cantilever pontic and implant superstructure. 6. Under oblique load, the stress was concentrated at the necks of implants and the ridge crests, but decreased at the joint of the cantilever pontic and implant superstructure than under vertical load.

  • PDF